4,935 research outputs found
Application of pressure-sensitive paints to unsteady and high-speed flows
The Pressure-Sensitive Paint (PSP) technique allows the global pressure mapping of surfaces under aerodynamic conditions. The present study involves the application of Tris- Bathophenanthroline Ruthenium Perchlorate based PSP, developed in-house, to two different cases; a) the flow through a sonic nozzle, and b) the examination of the effect of dimples on glancing shock wave turbulent boundary layer interactions at transonic speeds
On Fabry P\'erot Etalon based Instruments. I. The Isotropic Case
Here we assess the spectral and imaging properties of Fabry P\'erot etalons
when located in solar magnetographs. We discuss the chosen configuration
(collimated or telecentric) for both ideal and real cases. For the real cases,
we focus on the effects caused by the polychromatic illumination of the filter
by the irregularities in the optical thickness of the etalon and by deviations
from the ideal illumination in both setups. We first review the general
properties of Fabry P\'erots and we then address the different sources of
degradation of the spectral transmission profile. We review and extend the
general treatment of defects followed by different authors. We discuss the
differences between the point spread functions (PSFs) of the collimated and
telecentric configurations for both monochromatic and (real)
quasi-monochromatic illumination of the etalon. The PSF corresponding to
collimated mounts is shown to have a better performance, although it varies
from point to point due to an apodization of the image inherent to this
configuration. This is in contrast to the (perfect) telecentric case, where the
PSF remains constant but produces artificial velocities and magnetic field
signals because of its strong spectral dependence. We find that the unavoidable
presence of imperfections in the telecentrism produces a decrease of flux of
photons and a shift, a broadening and a loss of symmetrization of both the
spectral and PSF profiles over the field of view, thus compromising their
advantages over the collimated configuration. We evaluate these effects for
different apertures of the incident beam.Comment: 20 pages 22 figures 2 Appendice
Spatial deconvolution of spectropolarimetric data: an application to quiet Sun magnetic elements
Observations of the Sun from the Earth are always limited by the presence of
the atmosphere, which strongly disturbs the images. A solution to this problem
is to place the telescopes in space satellites, which produce observations
without any (or limited) atmospheric aberrations. However, even though the
images from space are not affected by atmospheric seeing, the optical
properties of the instruments still limit the observations. In the case of
diffraction limited observations, the PSF establishes the maximum allowed
spatial resolution, defined as the distance between two nearby structures that
can be properly distinguished. In addition, the shape of the PSF induce a
dispersion of the light from different parts of the image, leading to what is
commonly termed as stray light or dispersed light. This effect produces that
light observed in a spatial location at the focal plane is a combination of the
light emitted in the object at relatively distant spatial locations. We aim to
correct the effect produced by the telescope's PSF using a deconvolution
method, and we decided to apply the code on Hinode/SP quiet Sun observations.
We analyze the validity of the deconvolution process with noisy data and we
infer the physical properties of quiet Sun magnetic elements after the
deconvolution process.Comment: 14 pages, 9 figure
Detection of emission in the Si i 1082.7 nm line core in sunspot umbrae
We analyze spectropolarimetric sunspot umbra observations taken in the
near-infrared Si i 1082.7 nm line taking NLTE effects into account. The data
were obtained with the GRIS instrument installed at the German GREGOR
telescope. A point spread function (PSF) was constructed using prior Mercury
observations with GRIS and the information provided by the adaptive optics
system of the GREGOR telescope. The data were then deconvolved from the PSF
using a principal component analysis deconvolution method and were analyzed via
the NICOLE inversion code. The Si i 1082.7 nm line seems to be in emission in
the umbra of the observed sunspot after the effects of scattered light are
removed. We show how the spectral line shape of umbral profiles changes
dramatically with the amount of scattered light. Indeed, the continuum levels
range, on average, from 44% of the quiet Sun continuum intensity to about 20%.
The inferred levels are in line with current model predictions and empirical
umbral models. Current umbral empirical models are not able to reproduce the
emission in the deconvolved umbral Stokes profiles. The results of the NLTE
inversions suggests that to obtain the emission in the Si i 1082.7 nm line, the
temperature stratification should first have a hump located at about log tau -2
and start rising at lower heights when moving into the transition region. This
is, to our knowledge, the first time the Si i 1082.7 nm line is seen in
emission in sunspot umbrae. The results show that the temperature
stratification of current umbral models may be more complex than expected with
the transition region located at lower heights above sunspot umbrae. Our
finding might provide insights into understanding why the sunspot umbra
emission in the millimeter spectral range is less than that predicted by
current empirical umbral models
Recommended from our members
Effect of natural genetic variation on enhancer selection and function.
The mechanisms by which genetic variation affects transcription regulation and phenotypes at the nucleotide level are incompletely understood. Here we use natural genetic variation as an in vivo mutagenesis screen to assess the genome-wide effects of sequence variation on lineage-determining and signal-specific transcription factor binding, epigenomics and transcriptional outcomes in primary macrophages from different mouse strains. We find substantial genetic evidence to support the concept that lineage-determining transcription factors define epigenetic and transcriptomic states by selecting enhancer-like regions in the genome in a collaborative fashion and facilitating binding of signal-dependent factors. This hierarchical model of transcription factor function suggests that limited sets of genomic data for lineage-determining transcription factors and informative histone modifications can be used for the prioritization of disease-associated regulatory variants
Study of detonation interactions inside a 2-D ejector using detonation transmission tubing
Study of detonation interactions inside a two-dimensional ejector using detonation transmission tubing was reported. The main objective of the ejector assembly in the study is to make the flow-field as close to 2-D as possible. Optical-grade Perspex sheets with a thickness of 10 mm were used on both sides of the nozzle to allow visualization of the flow. Wall pressure measurements were conducted at the locations. The NONEL tube was flush with the entrance of the nozzle. The signal to begin pressure measurements and image acquisition was obtained through a Kulite XT-190 transducer. The detonation was initiate by an electronic blasting machine, DynoStart 2, with a capacitance of 0.2μF and an output voltage of 2500 V. High-speed shadowgraphy was employed to visualize the flow. The results show that the effects of 3-D flow at the initial stage of the detonation affect the incident shock front and the reflected shock wave system at the nozzle entrance
- …