1,114 research outputs found

    Full-wave EMC Simulations Using Maxwell Garnett Model For Composites With Cylindrical Inclusions

    Get PDF
    Four different models for effective dielectric properties of biphasic composite containing random or aligned cylindrical inclusions are considered in this paper. These models are based on the Maxwell Garnett (MG) mixing rule. The effects of distribution and orientation of cylindrical inclusions in a composite material is studied. An equivalent averaged material with Debye-like frequency characteristics, suitable for time-domain full-wave numerical electromagnetic simulations is retrieved. This Debye model is derived from the Maxwell Garnett formulation. The numerical model test structure consists of a composite slab inserted in a rectangular waveguide. Simulations are run for the frequency range above the cut-off frequency of the fundamental mode TE10. The differences between the proposed models are quantified using the Feature Selection Validation (FSV) tool. The comparison of the models provides an insight on the effect of inclusion orientation and distribution. © 2011 IEEE

    Complications and treatment errors in periodontal therapy in medically compromised patients

    Get PDF
    Patients who are medically compromised may be at an increased risk of complications and treatment errors following periodontal therapy. A review of the evidence on the topic is presented, in relation to the type of complication reported, of periodontal treatment, and of patients' medical status. Further, a framework for risk assessment and appropriate treatment modifications is introduced, with the aim of facilitating the management of patients with existing comorbidities and reducing the incidence of treatment complications

    Convergence of Ginzburg-Landau functionals in 3-d superconductivity

    Full text link
    In this paper we consider the asymptotic behavior of the Ginzburg- Landau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via {\Gamma}-convergence, a reduced model for the vortex density, and we deduce a curvature equation for the vortex lines. In a companion paper, we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H_{c1}, and the critical angular velocity of rotating Bose-Einstein condensates.Comment: 45 page

    On the possibility of magnetic Weyl fermions in non-symmorphic compound PtFeSb

    Full text link
    Weyl fermions are expected to exhibit exotic physical properties such as the chiral anomaly, large negative magnetoresistance or Fermi arcs. Recently a new platform to realize these fermions has been introduced based on the appearance of a three-fold band crossing at high symmetry points of certain space groups. These band crossings are composed of two linearly dispersed bands that are topologically protected by a Chern number, and a at band with no topological charge. In this paper we present a new way of inducing two kinds of Weyl fermions, based on two- and three-fold band crossings, in the non-symmorphic magnetic material PtFeSb. By means of density functional theory calculations and group theory analysis we show that magnetic order can split a six-fold degeneracy enforced by non-symmoprhic symmetry to create three-fold or two-fold degenerate Weyl nodes. We also report on the synthesis of a related phase potentially containing two-fold degenerate magnetic Weyl points and extend our group theory analysis to that phase. This is the first study showing that magnetic ordering has the potential to generate new threefold degenerate Weyl nodes, advancing the understanding of magnetic interactions in topological materials.Comment: 8 pages, 5 figure

    Sexual Health Dysfunction After Radiotherapy for Gynecological Cancer: Role of Physical Rehabilitation Including Pelvic Floor Muscle Training

    Get PDF
    Introduction: The present study aims to describe: 1. How the side effects of radiotherapy (RT) could impact sexual health in women; 2. The effectiveness of physical rehabilitation including pelvic floor muscle training (PFMT) in the management of sexual dysfunction after RT. Materials and Methods: Search keys on PubMed, Web of Science, Scopus, PEDro, and Cochrane were used to identify studies on women treated with radical or adjuvant RT and/or brachytherapy for gynecological cancers with an emphasis on vulvo-vaginal toxicities and PFMT studies on sexual dysfunction for this group of women. Results: Regarding the first key question, we analyzed 19 studies including a total of 2,739 women who reported vaginal dryness, stenosis, and pain as the most common side effects. Reports of dosimetric risk factors and dose-effect data for vaginal and vulvar post-RT toxicities are scant. Only five studies, including three randomized controlled trials (RCTs), were found to report the effect of PFMT alone or in combination with other treatments. The results showed some evidence for the effect of training modalities including PFMT, but to date, there is insufficient evidence from high-quality studies to draw any conclusion of a possible effect. Conclusions: Gynecological toxicities after RT are common, and their management is challenging. The few data available for a rehabilitative approach on post-actinic vulvo-vaginal side effects are encouraging. Large and well-designed RCTs with the long-term follow-up that investigate the effect of PFMT on vulvo-vaginal tissues and pelvic floor muscle function are needed to provide further guidance for clinical management

    Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array

    Full text link
    In this paper we investigate the asymptotic validity of boundary layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl's solution to Navier-Stokes solutions at different ReRe numbers. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions between the boundary layer and the outer flow. These interactions can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous interactions from a different perspective
    corecore