35 research outputs found

    Transcriptome analyses throughout chili pepper fruit development reveal novel insights into the domestication process

    Get PDF
    Chili pepper (Capsicum spp.) is an important crop, as well as a model for fruit development studies and domestication. Here, we performed a time-course experiment to estimate standardized gene expression profiles with respect to fruit development for six domesticated and four wild chili pepper ancestors. We sampled the transcriptomes every 10 days from flowering to fruit maturity, and found that the mean standardized expression profiles for domesticated and wild accessions significantly differed. The mean standardized expression was higher and peaked earlier for domesticated vs. wild genotypes, particularly for genes involved in the cell cycle that ultimately control fruit size. We postulate that these gene expression changes are driven by selection pressures during domestication and show a robust network of cell cycle genes with a time shift in expression, which explains some of the differences between domesticated and wild phenotypes

    Prospects for Îł\gamma-ray observations of the Perseus galaxy cluster with the Cherenkov Telescope Array

    No full text
    International audienceGalaxy clusters are expected to be dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster's formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at gamma-ray energies and are predicted to be sources of large-scale gamma-ray emission due to hadronic interactions in the intracluster medium. We estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse gamma-ray emission from the Perseus galaxy cluster. We perform a detailed spatial and spectral modelling of the expected signal for the DM and the CRp components. For each, we compute the expected CTA sensitivity. The observing strategy of Perseus is also discussed. In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratio within the radius R500R_{500} down to about X5001027X_{500}10^{27}s for DM masses above 1 TeV. These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario

    Prospects for a survey of the Galactic plane with the Cherenkov Telescope Array

    No full text
    International audienceApproximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the main classes of established Galactic VHE sources, as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy. We use the improved sky model and observation strategy to simulate GPS data that are analysed using the methods and software tools under development for real data. We show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, and to identify any bright PeVatrons. Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. (Abridged
    corecore