22 research outputs found

    The diagnostic potential of salivary protease activities in periodontal health and disease

    No full text
    Periodontal disease is characterised by proteolytic processes involving enzymes that are released by host immune cells and periodontal bacteria. These enzymes, when detectable in whole saliva, may serve as valuable diagnostic markers for disease states and progression. Because the substrate specificities of salivary proteases in periodontal health and disease are poorly characterised, we probed these activities using several relevant substrates: (i) gelatin and collagen type IV; (ii) the Arg/Lys-rich human salivary substrate histatin-5; and (iii) a histatin-derived synthetic analog benzyloxycarbonyl-Arg-Gly-Tyr-Arg-methyl cumaryl amide (Z-RGYR-MCA). Substrate degradation was assessed in gel (zymography) and in solution. Whole saliva supernatant enzyme activities directed at gelatin, quantified from the 42 kDa, 92 kDa and 130 kDa bands in the zymograms, were 1.3, 1.4 and 2.0-fold higher, respectively, in the periodontal patient group (P 0.10). Likewise, the hydrolysis rates of the Z-RGYR-MCA substrate were the same in the healthy and periodontal patient groups (P > 0.10). In conclusion, gelatinolytic/collagenolytic activities but not trypsin-like activities in human saliva differentiate health from periodontal disease and may thus provide an adjuvant to diagnosis for monitoring disease activity

    Evidence of Intact Histatins in the in vivo Acquired Enamel Pellicle

    No full text
    Understanding the composition and function of the acquired enamel pellicle (AEP) has been a major goal in oral biology. The aim of this study was to test the hypothesis that intact histatins are part of the in vivo AEP and that histatins after adsorption to HA have effects on in vitro enamel demineralization. This is the first study demonstrating the presence of intact histatins in vivo in the AEP. The in vitro experiments show that all naturally occurring histatins in the AEP have the potential to provide some level of protection against acid injury

    Characterization of histatin 5 with respect to amphipathicity, hydrophobicity, and effects on cell and mitochondrial membrane integrity excludes a candidacidal mechanism of pore formation

    No full text
    Histatin 5 is a 24-residue peptide from human saliva with antifungal properties. We recently demonstrated that histatin 5 translocates across the yeast membrane and targets to the mitochondria, suggesting an unusual antifungal mechanism (Helmerhorst, E. J., Breeuwer, P., van`t Hof, W., Walgreen-Weterings, E., Oomen, L. C. J. M., Veerman, E. C. I., Nieuw Amerongen, A. V., and Abee, T. (1999) J. Biol. Chem. 274, 7286-7291). The present study used specifically designed synthetic analogs of histatin 5 to elucidate the role of peptide amphipathicity, hydrophobicity, and the propensity to adopt -helical structures in relation to membrane permeabilization and fungicidal activity. Studies included circular dichroism measurements, evaluation of the effects on the cytoplasmic transmembrane potential and on the respiration of isolated mitochondria, and analysis of the peptide hydrophobicity/amphipathicity relationship (Eisenberg, D. (1984) Annu. Rev. Biochem. 53, 595-623). The 14-residue synthetic peptides used were dh-5, comprising the functional domain of histatin 5, and dhvar1 and dhvar4, both designed to maximize amphipathic characteristics. The results obtained show that the amphipathic analogs exhibited a high fungicidal activity, a high propensity to form an -helix, dissipated the cytoplasmic transmembrane potential, and uncoupled the respiration of isolated mitochondria, similar to the pore-forming peptide PGLa (Peptide with N-terminal Glycine and C-terminal Leucine-amide). In contrast, histatin 5 and dh-5 showed fewer or none of these features. The difference in these functional characteristics between histatin 5 and dh-5 on the one hand and dhvar1, dhvar4, and PGLa on the other hand correlated well with their predicted affinity for membranes based on hydrophobicity/amphipathicity analysis. These data indicate that the salivary protein histatin 5 exerts its antifungal function through a mechanism other than pore formatio
    corecore