570 research outputs found

    Development of a high sensitivity torsional balance for the study of the Casimir force in the 1-10 micrometer range

    Get PDF
    We discuss a proposal to measure the Casimir force in the parallel plate configuration in the 1−10ÎŒ1-10\mum range via a high-sensitivity torsional balance. This will allow to measure the thermal contribution to the Casimir force therefore discriminating between the various approaches discussed so far. The accurate control of the Casimir force in this range of distances is also required to improve the limits to the existence of non-Newtonian forces in the micrometer range predicted by unification models of fundamental interactions.Comment: 10 pages, 2 figure

    Equilibrium states of a test particle coupled to finite size heat baths

    Get PDF
    We report on numerical simulations of the dynamics of a test particle coupled to competing Boltzmann heat baths of finite size. After discussing some features of the single bath case, we show that the presence of two heat baths further constraints the conditions necessary for the test particle to thermalize with the heat baths. We find that thermalization is a spectral property in which the oscillators of the bath with frequencies in the range of the test particle characteristic frequency determine its degree of thermalization. We also find an unexpected frequency shift of the test particle response with respect to the spectra of the two heat baths. Finally, we discuss implications of our results for the study of high-frequency nanomechanical resonators through cold damping cooling techniques, and for engineering reservoirs capable of mitigating the back-action on a mechanical system.Comment: Strongly related to arXiV:0810.3251 (appeared in European Physical Journal B 61, 271 (2008

    Quantum dissipative effects in moving mirrors: a functional approach

    Full text link
    We use a functional approach to study various aspects of the quantum effective dynamics of moving, planar, dispersive mirrors, coupled to scalar or Dirac fields, in different numbers of dimensions. We first compute the Euclidean effective action, and use it to derive the imaginary part of the `in-out' effective action. We also obtain, for the case of the real scalar field in 1+1 dimensions, the Schwinger-Keldysh effective action and a semiclassical Langevin equation that describes the motion of the mirror including noise and dissipative effects due to its coupling to the quantum fields.Comment: References added. Version to appear in Phys. Rev.

    Exact Casimir interaction between eccentric cylinders

    Get PDF
    The Casimir force is the ultimate background in ongoing searches of extra-gravitational forces in the micrometer range. Eccentric cylinders offer favorable experimental conditions for such measurements as spurious gravitational and electrostatic effects can be minimized. Here we report on the evaluation of the exact Casimir interaction between perfectly conducting eccentric cylinders using a mode summation technique, and study different limiting cases of relevance for Casimir force measurements, with potential implications for the understanding of mechanical properties of nanotubes.Comment: 5 pages, 4 figure

    Impulsive quantum measurements: restricted path integral versus von Neumann collapse

    Full text link
    The relation between the restricted path integral approach to quantum measurement theory and the commonly accepted von Neumann wavefunction collapse postulate is presented. It is argued that in the limit of impulsive measurements the two approaches lead to the same predictions. The example of repeated impulsive quantum measurements of position performed on a harmonic oscillator is discussed in detail and the quantum nondemolition strategies are recovered in both the approaches.Comment: 12 pages, 3 figure

    Thermal and dissipative effects in Casimir physics

    Get PDF
    We report on current efforts to detect the thermal and dissipative contributions to the Casimir force. For the thermal component, two experiments are in progress at Dartmouth and at the Institute Laue Langevin in Grenoble. The first experiment will seek to detect the Casimir force at the largest explorable distance using a cylinder-plane geometry which offers various advantages with respect to both sphere-plane and parallel-plane geometries. In the second experiment, the Casimir force in the parallel-plane configuration is measured with a dedicated torsional balance, up to 10 micrometers. Parallelism of large surfaces, critical in this configuration, is maintained through the use of inclinometer technology already implemented at Grenoble for the study of gravitationally bound states of ultracold neutrons, For the dissipative component of the Casimir force, we discuss detection techniques based upon the use of hyperfine spectroscopy of ultracold atoms and Rydberg atoms. Although quite challenging, this triad of experimental efforts, if successful, will give us a better knowledge of the interplay between quantum and thermal fluctuations of the electromagnetic field and of the nature of dissipation induced by the motion of objects in a quantum vacuum.Comment: Contribution to QFEXT'06, appeared in special issue of Journal of Physics

    Gestures and words in naming: Evidence from cross-linguistic and cross-cultural comparison

    Get PDF
    We report on an analysis of spontaneous gesture production in 2-year-old children who come from three countries (Italy, UK and Australia) and whom speak two languages (Italian and English), in an attempt to tease apart the influence of language and culture when comparing children from different cultural and linguistic environments. Eighty-seven monolingual children aged 24-30 months completed an experimental task measuring their comprehension and production of nouns and predicates. The Italian children scored significantly higher than the other groups on all lexical measures. With regards to gestures, British children produced significantly fewer pointing and speech combinations compared to the Italian and Australian children, who did not differ from each other. In contrast, Italian children produced significantly more representational gestures than the two other groups. We conclude that spoken language development is primarily influenced by the input language over gesture production, whereas the combination of cultural and language environments affects gesture productions

    Quantum limit in resonant vacuum tunneling transducers

    Full text link
    We propose an electromechanical transducer based on a resonant-tunneling configuration that, with respect to the standard tunneling transducers, allows larger tunneling currents while using the same bias voltage. The increased current leads to an increase of the shot noise and an increase of the momentum noise which determine the quantum limit in the system under monitoring. Experiments with micromachined masses at 4.2 K could show dominance of the momentum noise over the Brownian noise, allowing observation of the quantum-mechanical noise at the mesoscopic scale
    • 

    corecore