27 research outputs found

    Spectral Evolutions in Gamma-Ray Burst Exponential Decays Observed with Suzaku WAM

    Get PDF
    This paper presents a study on the spectral evolution of gamma-ray burst (GRB) prompt emissions observed with the Suzaku Wide-band All-sky Monitor (WAM). By making use of the WAM data archive, 6 bright GRBs exhibiting 7 well-separated fast-rise-exponential-decay (FRED) shaped light curves are presented and the evaluated exponential decay time constants of the energy-resolved light curves from these FRED peak light curves are shown to indicate significant spectral evolution. The energy dependence of the time constants is well described with a power-law function tau(E) ~ E^gamma, where gamma ~ -(0.34 +/- 0.12) in average, although 5 FRED peaks show consistent value of gamma = -1/2 which is expected in synchrotron or inverse-Compton cooling models. In particular, 2 of the GRBs were located with accuracy sufficient to evaluate the time-resolved spectra with precise energy response matrices. Their behavior in spectral evolution suggests two different origins of emissions. In the case of GRB081224, the derived 1-s time-resolved spectra are well described by a blackbody radiation model with a power-law component. The derived behavior of cooling is consistent with that expected from radiative cooling or expansion of the emission region. On the other hand, the other 1-s time-resolved spectra from GRB100707A is well described by a Band GRB model as well as with the thermal model. Although relative poor statistics prevent us to conclude, the energy dependence in decaying light curve is consistent with that expected in the former emission mechanism model.Comment: 11 pages, 7 figures, 5 tables. PASJ accepte

    WIDGET: System Performance and GRB Prompt Optical Observations

    Full text link
    The WIDeField telescope for Gamma-ray burst Early Timing (WIDGET) is used for a fully automated, ultra-wide-field survey aimed at detecting the prompt optical emission associated with Gamma-ray Bursts (GRBs). WIDGET surveys the HETE-2 and Swift/BAT pointing directions covering a total field of view of 62 degree x 62 degree every 10 secounds using an unfiltered system. This monitoring survey allows exploration of the optical emission before the gamma-ray trigger. The unfiltered magnitude is well converted to the SDSS r' system at a 0.1 mag level. Since 2004, WIDGET has made a total of ten simultaneous and one pre-trigger GRB observations. The efficiency of synchronized observation with HETE-2 is four times better than that of Swift. There has been no bright optical emission similar to that from GRB 080319B. The statistical analysis implies that GRB080319B is a rare event. This paper summarizes the design and operation of the WIDGET system and the simultaneous GRB observations obtained with this instrument.Comment: 19 pages, 11 figures, Accepted to appear in PAS

    Spectral Properties of Prompt Emission of Four Short Gamma-Ray Bursts Observed by the Suzaku-WAM and the Konus-Wind

    Full text link
    We have performed a joint analysis of prompt emission from four bright short gamma-ray bursts (GRBs) with the Suzaku-WAM and the Konus-Wind experiments. This joint analysis allows us to investigate the spectral properties of short-duration bursts over a wider energy band with a higher accuracy. We find that these bursts have a high Epeak_{\rm peak}, around 1 MeV and have a harder power-law component than that of long GRBs. However, we can not determine whether these spectra follow the cut-off power-law model or the Band model. We also investigated the spectral lag, hardness ratio, inferred isotropic radiation energy and existence of a soft emission hump, in order to classify them into short or long GRBs using several criteria, in addition to the burst duration. We find that all criteria, except for the existence of the soft hump, support the fact that our four GRB samples are correctly classified as belonging to the short class. In addition, our broad-band analysis revealed that there is no evidence of GRBs with a very large hardness ratio, as seen in the BATSE short GRB sample, and that the spectral lag of our four short GRBs is consistent with zero, even in the MeV energy band, unlike long GRBs. Although our short GRB samples are still limited, these results suggest that the spectral hardness of short GRBs might not differ significantly from that of long GRBs, and also that the spectral lag at high energies could be a strong criterion for burst classification.Comment: 23 pages, 6 figures, accepted for Publications of the Astronomical Society of Japa

    A multi band study of the optically dark GRB 051028

    Full text link
    Observations were made of the optical afterglow of GRB 051028 with the Lulin observatory's 1.0 m telescope and the WIDGET robotic telescope system. R band photometric data points were obtained on 2005 October 28 (UT), or 0.095-0.180 days after the burst. There is a possible plateau in the optical light curve around 0.1 days after the burst; the light curve resembles optically bright afterglows (e.g. GRB 041006, GRB 050319, GRB060605) in shape of the light curve but not in brightness. The brightness of the GRB 051028 afterglow is 3 magnitudes fainter than that of one of the dark events, GRB 020124. Optically dark GRBs have been attributed to dust extinction within the host galaxy or high redshift. However, the spectrum analysis of the X-rays implies that there is no significant absorption by the host galaxy. Furthermore, according to the model theoretical calculation of the Lyα\alpha absorption to find the limit of GRB 051028's redshift, the expected RR band absorption is not high enough to explain the darkness of the afterglow. While the present results disfavor either the high-redshift hypothesis or the high extinction scenario for optically dark bursts, they are consistent with the possibility that the brightness of the optical afterglow, intrinsically dark.Comment: 5page, 5 figures, 1 table, accepted for publication in PASJ Letter. PASJ styl

    Observations of the Prompt Gamma-Ray Emission of GRB 070125

    Get PDF
    The long, bright gamma-ray burst GRB 070125 was localized by the Interplanetary Network. We present light curves of the prompt gamma-ray emission as observed by Konus-WIND, RHESSI, Suzaku-WAM, and \textit{Swift}-BAT. We detail the results of joint spectral fits with Konus and RHESSI data. The burst shows moderate hard-to-soft evolution in its multi-peaked emission over a period of about one minute. The total burst fluence as observed by Konus is 1.79×1041.79 \times 10^{-4} erg/cm2^2 (20 keV--10 MeV). Using the spectroscopic redshift z=1.548z=1.548, we find that the burst is consistent with the ``Amati'' Epeak,iEisoE_{peak,i}-E_{iso} correlation. Assuming a jet opening angle derived from broadband modeling of the burst afterglow, GRB 070125 is a significant outlier to the ``Ghirlanda'' Epeak,iEγE_{peak,i}-E_\gamma correlation. Its collimation-corrected energy release Eγ=2.5×1052E_\gamma = 2.5 \times 10^{52} ergs is the largest yet observed.Comment: 25 pages, 6 figures; accepted for publication in ApJ. Improved spectral fits and energetics estimate

    Spectral evolution of GRB 060904A observed with Swift and Suzaku -- Possibility of Inefficient Electron Acceleration

    Full text link
    We observed an X-ray afterglow of GRB 060904A with the Swift and Suzaku satellites. We found rapid spectral softening during both the prompt tail phase and the decline phase of an X-ray flare in the BAT and XRT data. The observed spectra were fit by power-law photon indices which rapidly changed from Γ=1.510.03+0.04\Gamma = 1.51^{+0.04}_{-0.03} to Γ=5.300.59+0.69\Gamma = 5.30^{+0.69}_{-0.59} within a few hundred seconds in the prompt tail. This is one of the steepest X-ray spectra ever observed, making it quite difficult to explain by simple electron acceleration and synchrotron radiation. Then, we applied an alternative spectral fitting using a broken power-law with exponential cutoff (BPEC) model. It is valid to consider the situation that the cutoff energy is equivalent to the synchrotron frequency of the maximum energy electrons in their energy distribution. Since the spectral cutoff appears in the soft X-ray band, we conclude the electron acceleration has been inefficient in the internal shocks of GRB 060904A. These cutoff spectra suddenly disappeared at the transition time from the prompt tail phase to the shallow decay one. After that, typical afterglow spectra with the photon indices of 2.0 are continuously and preciously monitored by both XRT and Suzaku/XIS up to 1 day since the burst trigger time. We could successfully trace the temporal history of two characteristic break energies (peak energy and cutoff energy) and they show the time dependence of t3t4\propto t^{-3} \sim t^{-4} while the following afterglow spectra are quite stable. This fact indicates that the emitting material of prompt tail is due to completely different dynamics from the shallow decay component. Therefore we conclude the emission sites of two distinct phenomena obviously differ from each other.Comment: 19 pages, 9 figures, accepted for publication in PASJ (Suzaku 2nd Special Issue

    Synthesis and characterization of glycolate precursors to MTiO3 (M = Ni2+, Co2+, Zn2+)

    No full text
    Novel glycolate precursors to metal titanates MTiO3 (M = Ni2+, Co2+, Zn2+) were synthesized by heating metal acetate and titanium isopropoxide in ethylene glycol up to 190 °C during distilling the water to avoid hydrolysis of precursors. These glycolate precursors were characterized by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), thermal analysis (TG-DTA), and scanning electron microscopy (SEM). The obtained three isostructural glycolate precursors were containing metal (Ni, Co, Zn), titanium, and ethylene glycol with a ratio of 1:1:4. The crystal growth processes of three precursors were different from each other. These precursors revealed homogeneous and well-defined rod-like structure with 0.5–3.0 μm in thickness and 4–20 μm in length. The obtained metal titanates were consisted of microrods with 0.4–1.5 μm in thickness and 2–15 μm in length

    Landiolol, an ultra-short acting beta-1 blocker, for preventing postoperative lung cancer recurrence : study protocol for a phase III, multicenter randomized trial with two parallel groups of patients

    No full text
    Background: Recurrence of cancer after curative surgery is a major problem after most cancer treatments. Increased sympathetic activity during the perioperative period could promote cancer cell invasion to blood vessels and angiogenesis, resulting in cancer metastasis. Recent studies showed that use of beta blockers can be associated with the prolonged survival of patients with cancer. The objective of this study is to evaluate the preventive effects of landiolol hydrochloride, which is an ultra-short-acting beta-1-selective blocker that has been developed in Japan, on reducing recurrence of cancer after curative surgery for patients with lung cancer. Methods: The present study is a phase III, multicenter, randomized trial with two parallel groups of patients with lung cancer, comparing surgery alone and surgery with landiolol administration for three days during the perioperative period. A total of 400 patients will be enrolled from 12 Japanese institutions. The primary endpoint is two-year relapse-free survival and overall survival after curative surgery for lung cancer. The secondary endpoints are additional treatment after recurrence of cancer, safety events, and the incidence of postoperative complications. Discussion: The principal question addressed in this trial is whether landiolol can reduce recurrence of cancer after curative surgery for lung cancer

    Spectral Evolutions in Gamma-Ray Burst Exponential Decays Observed with Suzaku WAM

    No full text
    This paper presents a study on the spectral evolution of gamma-ray burst (GRB) prompt emissions observed with the Suzaku Wide-band All-sky Monitor (WAM). By making use of the WAM data archive, 6 bright GRBs exhibiting 7 well-separated fast-rise-exponential-decay (FRED) shaped light curves are presented, and the evaluated exponential decay time constants of the energy-resolved light curves from these FRED peak light curves are shown to indicate significant spectral evolution. The energy dependence of the time constants is well described with a power-law function, τ(⁠E⁠) ∝Eγ⁠, where γ∼−(0.34±0.12) on average, although 5 FRED peaks show a consistent value of γ=−1/2, which is expected in synchrotron or inverse-Compton cooling models. In particular, 2 of the GRBs were located with accuracy sufficient to evaluate the time-resolved spectra with precise energy response matrices. Their behavior in spectral evolution suggests two different origins of emissions. In the case of GRB 081224, the derived 1-s time-resolved spectra are well described by a blackbody radiation model with a power-law component. The derived behavior of cooling is consistent with that expected from radiative cooling or expansion of the emission region. On the other hand, the other 1-s time-resolved spectra from GRB 100707A is well described by a Band GRB model as well as with the thermal model. Although relative poor statistics prevent us to conclude, the energy dependence in the decaying light curve is consistent with that expected in the former emission mechanism model.Part of this work was financially supported by the Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for Scientific Research No. 22340039
    corecore