25 research outputs found

    Immunohistochemical Demonstration of Membrane-bound Prostaglandin E2 Synthase-1 in Papillary Thyroid Carcinoma

    Get PDF
    Microsomal prostaglandin E2 synthase-1 (mPGES-1) is an inducible enzyme that catalyzes the conversion of prostaglandin (PG) H2 to PGE2 in downstream of cyclooxygenase-2 (COX-2). Recent studies have obtained in vitro evidence that PGE2 participates in carcinogenesis, angiogenesis, and induction of matrix metalloproteinase-9 (MMP-9), which plays a crucial role in cancer invasion. However, implications for mPGES-1 in thyroid carcinomas remain to be determined. To address this issue, we performed an immunohistochemical analysis for mPGES-1, COX-2 and MMP-9 in 20 papillary thyroid carcinoma (PTC) patients. mPGES-1 immunoreactivity was localized in the cytoplasm of carcinoma cells in 19 cases, with an intensity that tended to be distinct at the interface between the tumor and the surrounding non-neoplastic tissue. Staining was more intense in regions with papillary arrangement, while it was less intense in regions with trabecular or solid arrangement. In many cases, immunohistochemical localization of COX-2 and MMP-9 resemble that of mPGES-1. Taken together, our results suggest the involvement of mPGES-1 in proliferation and differentiation of PTC as well as local invasion of PTC

    Common Variants in CDKN2B-AS1 Associated with Optic-Nerve Vulnerability of Glaucoma Identified by Genome-Wide Association Studies in Japanese

    Get PDF
    BACKGROUND: To date, only a small portion of the genetic variation for primary open-angle glaucoma (POAG), the major type of glaucoma, has been elucidated. METHODS AND PRINCIPAL FINDINGS: We examined our two data sets of the genome-wide association studies (GWAS) derived from a total of 2,219 Japanese subjects. First, we performed a GWAS by analyzing 653,519 autosomal common single-nucleotide polymorphisms (SNPs) in 833 POAG patients and 686 controls. As a result, five variants that passed the Bonferroni correction were identified in CDKN2B-AS1 on chromosome 9p21.3, which was already reported to be a significant locus in the Caucasian population. Moreover, we combined the data set with our previous GWAS data set derived from 411 POAG patients and 289 controls by the Mantel-Haenszel test, and all of the combined variants showed stronger association with POAG (P<5.8 × 10(-10)). We then subdivided the case groups into two subtypes based on the value of intraocular pressure (IOP)--POAG with high IOP (high pressure glaucoma, HPG) and that with normal IOP (normal pressure glaucoma, NPG)--and performed the GWAS using the two data sets, as the prevalence of NPG in Japanese is much higher than in Caucasians. The results suggested that the variants from the same CDKN2B-AS1 locus were likely to be significant for NPG patients. CONCLUSIONS AND SIGNIFICANCE: In this study, we successfully identified POAG-associated variants in the CDKN2B-AS1 locus using a Japanese population, i.e., variants originally reported as being associated with the Caucasian population. Although we cannot rule out that the significance could be due to the differences in sample size between HPG and NPG, the variants could be associated specifically with the vulnerability of the optic nerve to IOP, which is useful for investigating the etiology of glaucoma

    A useful immunohistochemical approach to evaluate intraductal proliferative lesions of the breast and to predict their prognosis

    No full text
    An examination was performed on 16 intraductal proliferative breast lesions diagnosed as intraductal papillomas (IP) or usual ductal hyperplasia (UDH), which were followed up for more than 3 years. An immunohistochemical marker panel combining myoepithelial markers, high-molecular-weight keratin (HMWK) and neuroendocrine markers was used. Two of 11 IP cases were re-evaluated as atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS). These cases developed breast cancer after the first operation. One IP case showed repeated recurrences. None of the other IP and UDH cases had breast cancer or recurrence. The ADH, DCIS and the recurrent IP showing a solid growth lacked myoepithelia, but the recurrent IP expressed HMWK, immunohistochemically. Interestingly, these three lesions were weakly positive for neuroendocrine markers. All other IPs and UDHs, including lesions having solid components, were negative for neuroendocrine markers, and most of them were positive for myoepithelial markers and/or HMWK. A combination of the above immunohistochemical markers seems useful to evaluate intraductal proliferative lesions and to predict their prognosis. In particular, intraductal proliferative lesions with solid components exhibiting positivity for neuroendocrine markers should be followed up carefully to monitor breast cancer risk or recurrence

    Dietary nitrate supplementation increases nitrate and nitrite concentrations in human skin interstitial fluid

    No full text
    Acute dietary nitrate (NO3−) supplementation can increase [NO3−], but not nitrite ([NO2−]), in human skeletal muscle, though its effect on [NO3−] and [NO2−] in skin remains unknown. In an independent group design, 11 young adults ingested 140 mL of NO3−-rich beetroot juice (BR; 9.6 mmol NO3−), and 6 young adults ingested 140 mL of a NO3−-depleted placebo (PL). Skin dialysate, acquired through intradermal microdialysis, and venous blood samples were collected at baseline and every hour post-ingestion up to 4 h to assess dialysate and plasma [NO3−] and [NO2−]. The relative recovery rate of NO3− and NO2− through the microdialysis probe (73.1% and 62.8%), determined in a separate experiment, was used to estimate skin interstitial [NO3−] and [NO2−]. Baseline [NO3−] was lower, whereas baseline [NO2−] was higher in the skin interstitial fluid relative to plasma (both P < 0.001). Acute BR ingestion increased [NO3−] and [NO2−] in the skin interstitial fluid and plasma (all P < 0.001), with the magnitude being smaller in the skin interstitial fluid (e.g., 183 ± 54 vs. 491 ± 62 μM for △[NO3−] from baseline and 155 ± 190 vs. 217 ± 204 nM for △[NO2−] from baseline at 3 h post BR ingestion, both P ≤ 0.037). However, due to the aforementioned baseline differences, skin interstitial fluid [NO2−] post BR ingestion was higher, whereas [NO3−] was lower relative to plasma (all P < 0.001). These findings extend our understanding of NO3− and NO2− distribution at rest and indicate that acute BR supplementation increases [NO3−] and [NO2−] in human skin interstitial fluid
    corecore