38 research outputs found

    Probabilistic projection of the sex ratio at birth and missing female births by State and Union Territory in India

    Get PDF
    The sex ratio at birth (SRB) in India has been reported to be imbalanced since the 1970s. Previous studies have shown there is a great variation in the SRB between geographic locations across India till 2016. Considering the enormous population and regional heterogeneity of India, producing probabilistic SRB projections at the state level is crucial for policy planning and population projection. In this paper, we implement a Bayesian hierarchical time series model to project the SRB across India by state. We generate SRB probabilistic projections from 2017 to 2030 for 29 States and Union Territories (UTs) in India, and present results for 21 States/UTs with data available from the Sample Registration System. Our analysis takes into account two state-specific factors that contribute to sex-selective abortion in India, resulting in sex imbalances at birth: the intensity of son preference and fertility squeeze. We project that the highest deficits in female births will occur in Uttar Pradesh, with a cumulative number of missing female births of 2.0 (95% credible interval [1.9; 2.2]) million from 2017 to 2030. The total female birth deficits during 2017–2030 for the whole of India is projected to be 6.8 [6.6; 7.0] million

    Separating Stimulus-Induced and Background Components of Dynamic Functional Connectivity in Naturalistic fMRI

    Get PDF
    We consider the challenges in extracting stimulus-related neural dynamics from other intrinsic processes and noise in naturalistic functional magnetic resonance imaging (fMRI). Most studies rely on inter-subject correlations (ISC) of low-level regional activity and neglect varying responses in individuals. We propose a novel, data-driven approach based on low-rank plus sparse (L+S) decomposition to isolate stimulus-driven dynamic changes in brain functional connectivity (FC) from the background noise, by exploiting shared network structure among subjects receiving the same naturalistic stimuli. The time-resolved multi-subject FC matrices are modeled as a sum of a low-rank component of correlated FC patterns across subjects, and a sparse component of subject-specific, idiosyncratic background activities. To recover the shared low-rank subspace, we introduce a fused version of principal component pursuit (PCP) by adding a fusion-type penalty on the differences between the columns of the low-rank matrix. The method improves the detection of stimulus-induced group-level homogeneity in the FC profile while capturing inter-subject variability. We develop an efficient algorithm via a linearized alternating direction method of multipliers to solve the fused-PCP. Simulations show accurate recovery by the fused-PCP even when a large fraction of FC edges are severely corrupted. When applied to natural fMRI data, our method reveals FC changes that were time-locked to auditory processing during movie watching, with dynamic engagement of sensorimotor systems for speech-in-noise. It also provides a better mapping to auditory content in the movie than ISC

    Estimation and probabilistic projection of levels and trends in the sex ratio at birth in seven provinces of Nepal from 1980 to 2050: a Bayesian modeling approach

    Get PDF
    Background The sex ratio at birth (SRB; ratio of male to female births) in Nepal has been reported around the normal level on the national level. However, the national SRB could mask the disparity within the country. Given the demographic and cultural heterogeneities in Nepal, it is crucial to model Nepal SRB on the subnational level. Prior studies on subnational SRB in Nepal are mostly based on reporting observed values from surveys and census, and no study has provided probabilistic projections. We aim to estimate and project SRB for the seven provinces of Nepal from 1980 to 2050 using a Bayesian modeling approach. Methods We compiled an extensive database on provincial SRB of Nepal, consisting 2001, 2006, 2011, and 2016 Nepal Demographic and Health Surveys and 2011 Census. We adopted a Bayesian hierarchical time series model to estimate and project the provincial SRB, with a focus on modelling the potential SRB imbalance. Results In 2016, the highest SRB is estimated in Province 5 (Lumbini Pradesh) at 1.102, corresponding to 110.2 male births per 100 female births, with a 95% credible interval (1.044, 1.127) and the lowest SRB is in Province 2 at 1.053 (1.035, 1.109). The SRB imbalance probabilities in all provinces are generally low and vary from 16% in Province 2 to 81% in Province 5 (Lumbini Pradesh). SRB imbalances are estimated to have begun at the earliest in 2001 in Province 5 (Lumbini Pradesh) with a 95% credible interval (1992, 2022) and the latest in 2017 (1998, 2040) in Province 2. We project SRB in all provinces to begin converging back to the national baseline in the mid-2030s. By 2050, the SRBs in all provinces are projected to be around the SRB baseline level. Conclusions Our findings imply that the majority of provinces in Nepal have low risks of SRB imbalance for the period 1980–2016. However, we identify a few provinces with higher probabilities of having SRB inflation. The projected SRB is an important illustration of potential future prenatal sex discrimination and shows the need to monitor SRB in provinces with higher possibilities of SRB imbalance

    Local covariance estimation using costationarity

    Get PDF
    In this paper we propose a novel estimator for the time-varying covariance of locally stationary time series. This new approach is based on costationary combinations, that is, time-varying deterministic combinations of locally stationary time series that are second-order stationary. We show with a simulation example that the new estimator has smaller variance than other approaches exclusively based on the evolutionary cross-periodogram, and can therefore be appealing in a large number of applications

    Forecasting non-stationary time series by wavelet process modelling

    Get PDF
    Many time series in the applied sciences display a time-varying second order structure. In this article, we address the problem of how to forecast these nonstationary time series by means of non-decimated wavelets. Using the class of Locally Stationary Wavelet processes, we introduce a new predictor based on wavelets and derive the prediction equations as a generalisation of the Yule-Walker equations. We propose an automatic computational procedure for choosing the parameters of the forecasting algorithm. Finally, we apply the prediction algorithm to a meteorological time series
    corecore