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Abstract In this paper we propose a novel estimator for the time-varying covari-
ance of locally stationary time series. This new approach is based upon costationary
combinations of such time series, that is, time-varying deterministic combinations
returning stationary processes. We show with a simulation example that the new
estimator has smaller variance than the available competitors which are exclusively
based on the evolutionary cross-periodogram, and can therefore be appealing in a
large number of applications.

1 Introduction

Loosely speaking, a stationary time series is one whose statistical properties remain
constant over time. A locally stationary (LS) time series is one whose statistical
properties can change slowly over time. As a consequence, such a series can appear
stationary when examined close up, but appear non-stationary when examined on a
larger scale. Priestley (1983) and Priestley (1988) provide a comprehensive review
of locally stationary processes and their history, Nason and von Sachs (1999) pro-
vides a more recent review. The methods described in this article can be applied to
locally stationary time series that are a triangular stochastic arrays defined in the
rescaled time t/T , where T represents the sample size.

Based on this setup, Dahlhaus (1997) proposed locally stationary Fourier (LSF)
processes whose underlying pseudo-spectral structure is defined in terms of Fourier
basis. The locally stationary wavelet (LSW) model due to Nason et al. (2000), in-
stead, decomposes the local structure of the process among different scales through
a set of non-decimated wavelets used as basis functions. In the following, we will
consider the latter family of processes defined as
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Xt;T =
∞

∑
j=1

∞

∑
k=−∞

Wj

(
k
T

)
ψ j(t− k)ε j,k, (1)

where {ψ j(t−k)} j is a family of discrete non-decimated wavelet filters whose local
support includes the neighborhood of t, and is spanned by the index k. The parameter
j is integer valued and represents the scale of the corresponding wavelet. The func-
tion Wj(k/T ) is a time localized amplitude of bounded variation, referring to diadic
scales indexed by j. Finally ε j,k is a sequence of doubly indexed i.i.d. standardized
random variables. This setup allows the definition of a time-varying generalization
of the classical spectra having a well defined limit in the rescaled time z ∈ (0,1)
defined as

S j(z) = lim
T→∞

∣∣∣∣Wj

(
[zT ]
T

)∣∣∣∣2 , (2)

where we have set k = [zT ], and [x] is the integer part of x. This multiscale LS
framework has proven to be useful to estimate the time-varying association between
non-stationary time series. The estimation of the local covariance is relevant in a
wide range of disciplines such as climatology, neuroscience and economics, where
the underlying phenomena are inherently characterized by regime changes that can-
not be appropriately taken into account by classical stationary models.

Ombao and Van Bellegem (2006) and Sanderson et al. (2010) propose method-
ologies based, respectively, on the cross-spectra of LSF and LSW models. In this
paper we propose an alternative methodology to estimate the local covariance func-
tion, which is based on the existence of time-varying linear combinations of LS pro-
cesses which are (co)stationary, see Cardinali and Nason (2010). The contribution
of this paper is therefore twofold. We first propose the new estimation methodology,
and then show this to be statistically efficient in comparison to the method proposed
in Sanderson et al. (2010). We illustrate a theoretical example and then validate the
comparison by means of simulations.

The article is structured as follows. Section 2 reviews the second order properties
of LS time series models and briefly describes the concept of costationarity. Section
3 introduce our new covariance estimator, and illustrate its relative efficiency over
the classical estimators using a theoretical and simulation example.

2 Local Covariance and Costationarity

When processes are not stationary in the wide sense, covariance operators may have
complicated time-varying properties. With non-stationarity their estimation is typ-
ically difficult, since a canonical spectral structure does not exist. Meyer (1993)
showed that although we are not able to find the bases which diagonalize compli-
cated integral operators in general, it is nevertheless possible to find well structured
bases which compress them. This means that (local) covariance operators can be
well represented by sparse matrices with respect to such bases. For n = 1,2, ...,N,
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the locally stationary behavior of LS processes X (n)
t;T is characterized by a local auto-

covariance function

γT (t,τ) = γn,n;T (t,τ) = Cov
(

X (n)
t;T ,X

(n)
t+τ;T

)
.

Using the approximation derived in Sanderson et al. (2010) this is representable as

γT (t,τ) =
log2 T

∑
j=1

S j

( t
T

)
Ψj(τ)+O(T−1) (3)

where S j(t/T ) = S j(t/T )(n) is the local spectra for X (n)
t;T , and Ψ(τ) =∑t ψ j(t)ψ j(t+

τ) is the autocorrelation wavelet, see Nason et al. (2000) for details. Similarly, using
another approximation derived in Sanderson et al. (2010), for n,m = 1,2, ...,N, the
local cross-covariance between two locally stationary processes X (n)

t;T and X (m)
t;T can

be defined as

γn,m;T (t,τ) =
log2 T

∑
j=1

S(n,m)
j

( t
T

)
Ψj(τ)+O(T−1), (4)

where S(n,m)
j (t/T ) is he local cross-spectra defined as

S(n,m)
j (t/T ) =W (n)

j

( t
T

)
W (m)

j

( t
T

)
, (5)

where W (n)
j (t/T ) and W (m)

j (t/T ) are the local amplitude functions for the processes

X (n)
t;T and X (m)

t;T respectively. Note that these functions, along with the local spec-
tra and cross-spectra, are defined in the rescaled time, and their limits for T → ∞

are well defined as γ(z,τ), γn,m(z,τ), S j(z) and S(n,m)
j (z) respectively, for z ∈ (0,1).

Moreover, note also that for univariate (globally) stationary time series the spectra
S j(t/T ) is time invariant, i.e. S j(t/T ) = S j ∀ j, which also implies for the same
process to have a Toeplitz covariance operator γ(t,τ) = γ(τ). Finally, the local co-
variance between two LS processes can be obtained as a particular case of equation
(4), when we set τ = 0, and is therefore defined as

γn,m;T (t,0) =
log2 T

∑
j=1

S(n,m)
j

( t
T

)
+O(T−1). (6)

2.1 Costationarity

We give a multivariate extension for the definition of costationary processes orig-
inally proposed in Cardinali and Nason (2010). However, we now concentrate on
constant piecewise solution vectors.
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Definition 1 Let Xt;T =
(

X (1)
t;T , ...,X

(N)
t;T

)
be a vector time series with local auto-

covariances and cross-covariances satisfying equations (3) and (4). Moreover as-
sume

sup
t

∣∣∣cor
(

X (n)
t;T ,X

(m)
t;T

)∣∣∣< 1,

and for n,m = 1,2, ...,N. We call Z(i)
t costationary process if there exists a set of

bounded piecewise constant functions α
(n,i)
t for t = 1, ...,T, n = 1, ...,N and i =

1,2, ..., I such that

Z(i)
t =

N

∑
n=1

α
(n,i)
t X (n)

t;T

is a covariance stationary process.

Costationary solutions are, in general, multiple. This multiplicity is represented here
through the index i. Using a vector notation we can also represent the set of costa-
tionary solutions as a time-varying linear system

Definition 2 Let Zt =
(

Z(1)
t , ...,Z(I)

t

)
and Xt;T as in Definition 1. We define the

costationary system as
Zt = At Xt;T ,

where, for each time point t, At = (αi,n;t)i,n is a (I×N) dimensional matrix of co-
stationary vector entries for time t.

The piecewise constant functions α
(n,i)
t are supposed to be measurable on a disjoint

sequence of half-opened diadic intervals. In this paper intervals of dyadic length
have been considered for computational convenience, however, in principle the the-
ory we present will apply to intervals of arbitrary length. For a discussion on seg-
mentation issues and regularity conditions concerning costationary solutions α

(n,i)
t

we refer again the interested reader to Cardinali and Nason (2010). For an arbitrary
time-varying LS combination, the local variance can be represented as

σ
2
Zi
(t) = ∑

n,m
α
(n,i)
t α

(m,i)
t γn,m;T (t,0), (7)

for n,m= 1, ...,N, and is typically a time-varying quantity. However, when consider-
ing costationary combinations Z(i)(t), the quantity defined in equation (7) becomes
time-invariant, so we can simply refer to it as σ2

Zi
.

3 A Costationary Estimator for Local Covariances

A direct estimator for the time-varying covariance of locally stationary processes
can be obtained by plugging a, possibly unbiased and consistent, cross-periodogram
into equation (6). The aim of this section is to introduce an alternative estimator for
the local covariance which makes use of costationary solutions. We will use integers



Local Covariance Estimation using Costationarity 5

n,m, l,h = 1,2, ...,N to identify (pairs of) LS processes. By imposing costationarity
the quantity defined in equation (7) can be estimated using the plug-in estimator

σ̂
2
Zi
= ∑

n,m
α̂
(n,i)
t α̂

(m,i)
t γ̂n,m;T (t,0) (8)

where γ̂n,m;T (t,0) can be any asymptotically unbiased and consistent estimator for
γn,m;T (t,0) and α̂

(n,i)
t can be determined using the costat algorithm described in Car-

dinali and Nason (2010). In practice we will obtain σ̂2
Zi

using the sample variance

estimator of costationary processes Z(i)
t . However, from equation (8), we can obtain

an alternative local covariance estimator as

γ̂
(i)
l,h;T (t,0) =

σ̂2
Zi
−∑n6=l,m 6=h α̂

(n,i)
t α̂

(m,i)
t γ̂n,m;T (t,0)

α̂
(l,i)
t α̂

(h,i)
t

. (9)

We are particularly interested in assessing any gain in efficiency possibly due to
averaging these single-solution estimators over multiple solutions. We will therefore
consider the estimator

γ̂
∗
l,h;T (t,0) =

1
I

I

∑
i=1

γ̂
(i)
l,h;T (t,0) (10)

The following section illustrates the efficiency of this estimator with a theoretical
and simulation example.

3.1 Theoretical example and simulations

For the illustrative purposes of this example we will only consider time-invariant
costationary systems, i.e. costationary systems with time-invariant costationary vec-
tors. These systems can be defined, as a particular case of the general form given in
Definition 2, as

Zt = A Xt;T , (11)

We consider two uncorrelated LS Gaussian processes X (1)
t;T and X (2)

t;T , respectively
having local spectra

S(1)j (t/T ) =

2/3, if j = j∗ and t ≤ T/2;
1/3, if j = j∗ and t > T/2;
0, otherwise.

(12)

and
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S(2)j (t/T ) =

1/3, if j = j∗ and t ≤ T/2;
2/3, if j = j∗ and t > T/2;
0, otherwise.

(13)

Then, for i = 1,2,3,4, and time-invariant costationary vectors

α
(1) = (1,1)

α
(2) = (1,−1)

α
(3) = (−1,1)

α
(4) = (−1,−1)

the linear combinations Z(i)
t are White-Noise processes with variance σ2

Zi
= 1.

This is an example of multiple costationary solution vectors which are also time-
invariant. Other costationary vectors can be found by multiplying α(i) by some real
scalar. By applying the singular value decomposition A = U D V we obtain

A =


1 1
1 −1
−1 1
−1 −1



=


−1/2 1/2
−1/2 −1/2

1/2 1/2
1/2 −1/2

 (
2 0
0 2

) (
−1 0

0 1

)

In this case we therefore have rank(A) = 2 and we expect the estimator γ̂∗l,h;T (t,0)
to be more efficient that the direct estimator proposed in Sanderson et al. (2010).
This is because the degree of efficiency of γ̂∗l,h;T (t,0), is obtained by exploiting the

number of non-perfectly correlated LS time series X (n)
t;T , which are used to produce

synthetic linearly independent data.

Remark 1 Note that, even in the general time-varying case of Definition 1 (i.e.
when At depends upon time), conditions therein are sufficient to ensure that rank(At)=
N, for all t = 1, ...,T , provided that I≥N. The greater is the number of non-perfectly
correlated time series returning costationary solutions, the greater is the degree of
efficiency of the new estimator.

We use this simple theoretical example to conduct a simulation experiment investi-
gating the relative efficiency of our costationary estimator for the local covariance
function when compared with the classical estimator exclusively based on the local
cross-spectra, that is, the plug-in estimator of the quantity defined in equation (6).
We simulate pairs of uncorrelated multiscale LS Gaussian processes having local
spectra as defined in equations (12) and (13).
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In this experiment we use a (real-valued) wavelet model representation. We
choose j∗ = 4 and simulate 30× 29/2 = 435 pairs of uncorrelated processes of
increasing length. For each length, and for each pair, we first estimate the local
covariance by using the classical local estimator. We then repeat the estimation by
using the statistics defined in equation (10). We use simulations to compute the time-
averaged Montecarlo variance of each estimator and to estimate the time-averaged
relative efficiency ratio. The analysis is conducted on samples of increasing size
T = 128,256,512,1024,2048. The results of this experiment are displayed in Ta-
ble 1. The results of our simulations show that the new estimator is substantially

Estimates T = 128 T = 256 T = 512 T = 1024 T = 2048
var[γ̂(t,0)] 0.0092 0.0101 0.0103 0.0112 0.0134
var[γ̂∗(t,0)] 0.0029 0.0028 0.0029 0.0030 0.0032
e f f [γ̂(t,0)/γ̂∗(t,0)] 3.1710 3.5970 3.5579 3.7321 4.1934

Table 1 Time-averaged Montecarlo variances and relative efficiency ratios for classical and costa-
tionary local covariance estimators

more efficient than the estimator exclusively based upon the cross-periodogram. In-
terestingly, the gain in efficiency is substantial even for very moderate sample sizes.
Moreover, increasing efficiency can be achieved by considering a larger number of
time series in costationary combinations. Future work will consider a full theoret-
ical investigation of this approach as well as some applications to economics and
financial data.
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