31 research outputs found

    From Unpleasant to Unbearable - Why And How to Implement an Upper Limit to Pain And Other Forms of Suffering in Research with Animals

    Get PDF
    The focus of this paper is the requirement that the use of live animals in experiments and in vivo assays should never be allowed if those uses involve severe suffering. This requirement was first implemented in Danish legislation, was later adopted by the European Union, and has had limited uptake in North America. Animal suffering can arise from exposure to a wide range of different external and internal events that threaten biological or social functions, while the severity of suffering may be influenced by the animals’ perceptions of their own situation and the degree of control they are able to exert. Severe suffering is more than an incremental increase in negative state(s) but involves a qualitative shift whereby the normal mechanisms to contain or keep negative states at arm’s length no longer function. The result of severe suffering will be a loss of the ability of cope. The idea of putting a cap on severe suffering may be justified from multiple ethical perspectives. In most, if not all, cases it is possible to avoid imposing severe suffering on animals during experiments without giving up the potential benefits of finding new ways to cure, prevent, or alleviate serious human diseases and generate other important knowledge. From this it follows that there is a strong ethical case to favor a regulatory ban on animal experiments involving severe suffering

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed
    corecore