5 research outputs found

    Reproducibility of adenosine stress cardiovascular magnetic resonance in multi-vessel symptomatic coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>First-pass perfusion cardiovascular magnetic resonance (CMR) is increasingly being utilized in both clinical practice and research. However, the reproducibility of this technique remains incompletely evaluated, particularly in patients with severe coronary artery disease (CAD). The purpose of this study was to determine the inter-study reproducibility of adenosine stress CMR in patients with symptomatic multi-vessel CAD and those at low risk for CAD.</p> <p>Methods</p> <p>Twenty patients (10 with CAD, 10 low risk CAD) underwent two CMR scans 8 ± 2 days apart. Basal, mid and apical left ventricular short axis slices were acquired using gadolinium 0.05 mmol/kg at peak stress (adenosine, 140 μ/kg/min, 4 min) and rest. Myocardial perfusion was evaluated qualitatively by assessing the number of ischemic segments, and semi-quantitatively by determining the myocardial perfusion reserve index (MPRi) using a normalized upslope method. Inter-study and observer reproducibility were assessed--the latter being defined by the coefficient of variation (CoV), which was calculated from the standard deviation of the differences of the measurements, divided by the mean. Additionally, the percentage of myocardial segments with perfect agreement and inter- and intra-observer MPRi correlation between studies, were also determined.</p> <p>Results</p> <p>The CoV for the number of ischemic segments was 31% with a mean difference of -0.15 ± 0.88 segments and 91% perfect agreement between studies. MPRi was lower in patients with CAD (1.13 ± 0.21) compared to those with low risk CAD (1.59 ± 0.58), p = 0.02. The reproducibility of MPRi was 19% with no significant difference between patients with CAD and those with low risk CAD (p = 0.850). Observer reproducibility for MPRi was high: inter-observer CoV 9%, r = 0.93 and intra-observer CoV 5%, r = 0.94. For trials using perfusion CMR as an endpoint, an estimated sample size of 12 subjects would be required to detect a two-segment change in the number of ischemic segments (power 0.9, α 0.05).</p> <p>Conclusions</p> <p>Adenosine stress CMR, by qualitative and semi-quantitative normalized upslope analyses are reproducible techniques in both patients with multi-vessel CAD and those without known CAD. The robust inter-study reproducibility of perfusion CMR supports its clinical and research application.</p

    Quantification in cardiac MRI: advances in image acquisition and processing

    Get PDF
    Cardiac magnetic resonance (CMR) imaging enables accurate and reproducible quantification of measurements of global and regional ventricular function, blood flow, perfusion at rest and stress as well as myocardial injury. Recent advances in MR hardware and software have resulted in significant improvements in image quality and a reduction in imaging time. Methods for automated and robust assessment of the parameters of cardiac function, blood flow and morphology are being developed. This article reviews the recent advances in image acquisition and quantitative image analysis in CMR

    Coronary Artery Disease Evaluation in Rheumatoid Arthritis (CADERA): Study protocol for a randomized controlled trial

    Get PDF
    Background: The incidence of cardiovascular disease (CVD) in rheumatoid arthritis (RA) is increased compared to the general population. Immune dysregulation and systemic inflammation are thought to be associated with this increased risk. Early diagnosis with immediate treatment and tight control of RA forms a central treatment paradigm. It remains unclear, however, whether using tumor necrosis factor inhibitors (TNFi) to achieve remission confer additional beneficial effects over standard therapy, especially on the development of CVD. Methods/Design: Coronary Artery Disease Evaluation in Rheumatoid Arthritis (CADERA) is a prospective cardiovascular imaging study that bolts onto an existing single-centre, randomized controlled trial, VEDERA (Very Early versus Delayed Etanercept in Rheumatoid Arthritis). VEDERA will recruit 120 patients with early, treatment-naïve RA, randomized to TNFi therapy etanercept (ETN) combined with methotrexate (MTX), or therapy with MTX with or without additional synthetic disease modifying anti-rheumatic drugs with escalation to ETN following a 'treat-to-target' regimen. VEDERA patients will be recruited into CADERA and undergo cardiac magnetic resonance (CMR) assessment with; cine imaging, rest/ stress adenosine perfusion, tissue-tagging, aortic distensibility, T1 mapping and late gadolinium imaging. Primary objectives are to detect the prevalence and change of cardiovascular abnormalities by CMR between TNFi and standard therapy over a 12-month period. All patients will enter an inflammatory arthritis registry for long-term follow-up. Discussion: CADERA is a multi-parametric study describing cardiovascular abnormalities in early, treatment-naïve RA patients, with assessment of changes at one year between early biological therapy and conventional therapy
    corecore