7 research outputs found

    The Molecular Chaperone Hsp90α Is Required for Meiotic Progression of Spermatocytes beyond Pachytene in the Mouse

    Get PDF
    The molecular chaperone Hsp90 has been found to be essential for viability in all tested eukaryotes, from the budding yeast to Drosophila. In mammals, two genes encode the two highly similar and functionally largely redundant isoforms Hsp90α and Hsp90ÎČ. Although they are co-expressed in most if not all cells, their relative levels vary between tissues and during development. Since mouse embryos lacking Hsp90ÎČ die at implantation, and despite the fact that Hsp90 inhibitors being tested as anti-cancer agents are relatively well tolerated, the organismic functions of Hsp90 in mammals remain largely unknown. We have generated mouse lines carrying gene trap insertions in the Hsp90α gene to investigate the global functions of this isoform. Surprisingly, mice without Hsp90α are apparently normal, with one major exception. Mutant male mice, whose Hsp90ÎČ levels are unchanged, are sterile because of a complete failure to produce sperm. While the development of the male reproductive system appears to be normal, spermatogenesis arrests specifically at the pachytene stage of meiosis I. Over time, the number of spermatocytes and the levels of the meiotic regulators and Hsp90 interactors Hsp70-2, NASP and Cdc2 are reduced. We speculate that Hsp90α may be required to maintain and to activate these regulators and/or to disassemble the synaptonemal complex that holds homologous chromosomes together. The link between fertility and Hsp90 is further supported by our finding that an Hsp90 inhibitor that can cross the blood-testis barrier can partially phenocopy the genetic defects

    The emerging role of insulin-like growth factor 1 receptor (IGF1r) in gastrointestinal stromal tumors (GISTs)

    Get PDF
    Recent years have seen a growing interest in insulin-like growth factor 1 receptor (IGF1R) in medical oncology. Interesting data have been reported also on IGF1r in gastrointestinal stromal tumors (GISTs) especially in children and in young adult patients whose disease does not harbour mutations on KIT and PDGFRA and are poorly responsive to conventional therapies. However, it is too early to reach conclusions on IGF1R as a novel therapeutic target in GIST because the receptor's biological role is still to be defined and the clinical significance in patients needs to be studied in larger studies. We update and comment the current literature on IGF1R in GISTs and discuss the future perspectives in this promising field

    Cell Death in Mammalian Ovary

    No full text

    Epithelial Tumours

    No full text
    corecore