42,722 research outputs found
Adiabatic Gate Teleportation
The difficulty in producing precisely timed and controlled quantum gates is a
significant source of error in many physical implementations of quantum
computers. Here we introduce a simple universal primitive, adiabatic gate
teleportation, which is robust to timing errors and many control errors and
maintains a constant energy gap throughout the computation above a degenerate
ground state space. Notably this construction allows for geometric robustness
based upon the control of two independent qubit interactions. Further, our
piecewise adiabatic evolution easily relates to the quantum circuit model,
enabling the use of standard methods from fault-tolerance theory for
establishing thresholds.Comment: 4 pages, 1 figure, with additional 3 pages and 2 figures in an
appendix. v2 Refs added. Video abstract available at
http://www.quantiki.org/video_abstracts/0905090
The use of genes for performance enhancement: doping or therapy?
Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM) to enhance athletic performance. In such ‘gene doping’, exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO), vascular endothelial growth factor (VEGF), insulin-like growth factor type 1 (IGF-1), myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products) in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping
Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth
We report on the effect of substrate temperature (T) on both local structure
and long-wavelength fluctuations of polycrystalline CdTe thin films deposited
on Si(001). A strong T-dependent mound evolution is observed and explained in
terms of the energy barrier to inter-grain diffusion at grain boundaries, as
corroborated by Monte Carlo simulations. This leads to transitions from
uncorrelated growth to a crossover from random-to-correlated growth and
transient anomalous scaling as T increases. Due to these finite-time effects,
we were not able to determine the universality class of the system through the
critical exponents. Nevertheless, we demonstrate that this can be circumvented
by analyzing height, roughness and maximal height distributions, which allow us
to prove that CdTe grows asymptotically according to the Kardar-Parisi-Zhang
(KPZ) equation in a broad range of T. More important, one finds positive
(negative) velocity excess in the growth at low (high) T, indicating that it is
possible to control the KPZ non-linearity by adjusting the temperature.Comment: 6 pages, 5 figure
The fluctuation-dissipation theorem and the linear Glauber model
We obtain exact expressions for the two-time autocorrelation and response
functions of the -dimensional linear Glauber model. Although this linear
model does not obey detailed balance in dimensions , we show that the
usual form of the fluctuation-dissipation ratio still holds in the stationary
regime. In the transient regime, we show the occurence of aging, with a special
limit of the fluctuation-dissipation ratio, , for a quench at
the critical point.Comment: Accepted for publication (Physical Review E
- …