24,627 research outputs found

    Conservation law for distributed entanglement of formation and quantum discord

    Full text link
    We present a direct relation, based upon a monogamic principle, between entanglement of formation (EOF) and quantum discord (QD), showing how they are distributed in an arbitrary tripartite pure system. By extending it to a paradigmatic situation of a bipartite system coupled to an environment, we demonstrate that the EOF and the QD obey a conservation relation. By means of this relation we show that in the deterministic quantum computer with one pure qubit the protocol has the ability to rearrange the EOF and the QD, which implies that quantum computation can be understood on a different basis as a coherent dynamics where quantum correlations are distributed between the qubits of the computer. Furthermore, for a tripartite mixed state we show that the balance between distributed EOF and QD results in a stronger version of the strong subadditivity of entropy.Comment: Published versio

    Running Gluon Mass from Landau Gauge Lattice QCD Propagator

    Full text link
    The interpretation of the Landau gauge lattice gluon propagator as a massive type bosonic propagator is investigated. Three different scenarios are discussed: i) an infrared constant gluon mass; ii) an ultraviolet constant gluon mass; iii) a momentum dependent mass. We find that the infrared data can be associated with a massive propagator up to momenta ∼500\sim 500 MeV, with a constant gluon mass of 723(11) MeV, if one excludes the zero momentum gluon propagator from the analysis, or 648(7) MeV, if the zero momentum gluon propagator is included in the data sets. The ultraviolet lattice data is not compatible with a massive type propagator with a constant mass. The scenario of a momentum dependent gluon mass gives a decreasing mass with the momentum, which vanishes in the deep ultraviolet region. Furthermore, we show that the functional forms used to describe the decoupling like solution of the Dyson-Schwinger equations are compatible with the lattice data with similar mass scales.Comment: Version to appear in J. Phys. G. New version include some rewriting and new analysis. In particular, the section on the running mass is ne

    Capacitive Coupling of Two Transmission Line Resonators Mediated by the Phonon Number of a Nanoelectromechanical Oscillator

    Full text link
    Detection of quantum features in mechanical systems at the nanoscale constitutes a challenging task, given the weak interaction with other elements and the available technics. Here we describe how the interaction between two monomodal transmission-line resonators (TLRs) mediated by vibrations of a nano-electromechanical oscillator can be described. This scheme is then employed for quantum non-demolition detection of the number of phonons in the nano-electromechanical oscillator through a direct current measurement in the output of one of the TLRs. For that to be possible an undepleted field inside one of the TLR works as a amplifier for the interaction between the mechanical resonator and the remaining TLR. We also show how how the non-classical nature of this system can be used for generation of tripartite entanglement and conditioned mechanical coherent superposition states, which may be further explored for detection processes.Comment: 6 pages, 5 figure
    • …
    corecore