30,100 research outputs found

    The CO A-X System for Constraining Cosmological Drift of the Proton-Electron Mass Ratio

    Get PDF
    The A1Π−X1Σ+\textrm{A}^1\Pi-\textrm{X}^1\Sigma^+ band system of carbon monoxide, which has been detected in six highly redshifted galaxies (z=1.6−2.7z=1.6-2.7), is identified as a novel probe method to search for possible variations of the proton-electron mass ratio (μ\mu) on cosmological time scales. Laboratory wavelengths of the spectral lines of the A-X (vv,0) bands for v=0−9v=0-9 have been determined at an accuracy of Δλ/λ=1.5×10−7\Delta\lambda/\lambda=1.5 \times 10^{-7} through VUV Fourier-transform absorption spectroscopy, providing a comprehensive and accurate zero-redshift data set. For the (0,0) and (1,0) bands, two-photon Doppler-free laser spectroscopy has been applied at the 3×10−83 \times 10^{-8} accuracy level, verifying the absorption data. Sensitivity coefficients KμK_{\mu} for a varying μ\mu have been calculated for the CO A-X bands, so that an operational method results to search for μ\mu-variation.Comment: 7 pages (main article), 3 figures, includes supplementary materia

    Equivalence between different classical treatments of the O(N) nonlinear sigma model and their functional Schrodinger equations

    Full text link
    In this work we derive the Hamiltonian formalism of the O(N) non-linear sigma model in its original version as a second-class constrained field theory and then as a first-class constrained field theory. We treat the model as a second-class constrained field theory by two different methods: the unconstrained and the Dirac second-class formalisms. We show that the Hamiltonians for all these versions of the model are equivalent. Then, for a particular factor-ordering choice, we write the functional Schrodinger equation for each derived Hamiltonian. We show that they are all identical which justifies our factor-ordering choice and opens the way for a future quantization of the model via the functional Schrodinger representation.Comment: Revtex version, 17 pages, substantial change

    Novel techniques in VUV high-resolution spectroscopy

    Full text link
    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies. While the ns and ps pulsed laser sources, at Fourier-transform limited bandwidths, are used in wavelength scanning spectroscopy, the fs laser source is used in a two-pulse time delayed mode. In addition a Fourier-transform spectrometer for high resolution gas-phase spectroscopic studies in the VUV is described, exhibiting the multiplex advantage to measure many resonances simultaneously.Comment: 17 Pages, 8 figures, Conference proceedings of the VUV/X-ray 2013 at Hefei, Chin

    Off-axis retrieval of orbital angular momentum of light stored in cold atoms

    Full text link
    We report on the storage of orbital angu- lar momentum (OAM) of light of a Laguerre-Gaussian mode in an ensemble of cold cesium atoms and its re- trieval along an axis different from the incident light beam. We employed a time-delayed four-wave mixing configuration to demonstrate that at small angle (2o), after storage, the retrieved beam carries the same OAM as the one encoded in the input beam. A calculation based on mode decomposition of the retrieved beam over the Laguerre-Gaussian basis is in agreement with the experimental observations done at small angle values. However, the calculation shows that the OAM retrieving would get lost at larger angles, reducing the fidelity of such storing-retrieving process. In addition, we have also observed that by applying an external magnetic field to the atomic ensemble the retrieved OAM presents Larmor oscillations, demonstrating the possibility of its manipulation and off-axis retrieval.Comment: 9 pages, 4 figure

    How hole defects modify vortex dynamics in ferromagnetic nanodisks

    Full text link
    Defects introduced in ferromagnetic nanodisks may deeply affect the structure and dynamics of stable vortex-like magnetization. Here, analytical techniques are used for studying, among other dynamical aspects, how a small cylindrical cavity modify the oscillatory modes of the vortex. For instance, we have realized that if the vortex is nucleated out from the hole its gyrotropic frequencies are shifted below. Modifications become even more pronounced when the vortex core is partially or completely captured by the hole. In these cases, the gyrovector can be partially or completely suppressed, so that the associated frequencies increase considerably, say, from some times to several powers. Possible relevance of our results for understanding other aspects of vortex dynamics in the presence of cavities and/or structural defects are also discussed.Comment: 9 pages, 4 page
    • …
    corecore