41,808 research outputs found
An alternative theoretical approach to describe planetary systems through a Schrodinger-type diffusion equation
In the present work we show that planetary mean distances can be calculated
with the help of a Schrodinger-type diffusion equation. The obtained results
are shown to agree with the observed orbits of all the planets and of the
asteroid belt in the solar system, with only three empty states. Furthermore,
the equation solutions predict a fundamental orbit at 0.05 AU from solar-type
stars, a result confirmed by recent discoveries. In contrast to other similar
approaches previously presented in the literature, we take into account the
flatness of the solar system, by considering the flat solutions of the
Schrodinger-type equation. The model has just one input parameter, given by the
mean distance of Mercury.Comment: 6 pages. Version accepted for publication in Chaos, Solitons &
Fractal
Nonviolation of Bell's Inequality in Translation Invariant Systems
The nature of quantum correlations in strongly correlated systems has been a
subject of intense research. In particular, it has been realized that
entanglement and quantum discord are present at quantum phase transitions and
able to characterize it. Surprisingly, it has been shown for a number of
different systems that qubit pairwise states, even when highly entangled, do
not violate Bell's inequalities, being in this sense local. Here we show that
such a local character of quantum correlations is in fact general for
translation invariant systems and has its origins in the monogamy trade-off
obeyed by tripartite Bell correlations. We illustrate this result in a quantum
spin chain with a soft breaking of translation symmetry. In addition, we extend
the monogamy inequality to the -qubit scenario, showing that the bound
increases with and providing examples of its saturation through uniformly
generated random pure states.Comment: Published erratum added at the en
Generation of Superposition States and Charge-Qubit Relaxation Probing in a Circuit
We demonstrate how a superposition of coherent states can be generated for a
microwave field inside a coplanar transmission line coupled to a single
superconducting charge qubit, with the addition of a single classical magnetic
pulse for chirping of the qubit transition frequency. We show how the qubit
dephasing induces decoherence on the field superposition state, and how it can
be probed by the qubit charge detection. The character of the charge qubit
relaxation process itself is imprinted in the field state decoherence profile.Comment: 6 pages, 4 figure
Overcoming ambiguities in classical and quantum correlation measures
We identify ambiguities in the available frameworks for defining quantum,
classical, and total correlations as measured by discordlike quantifiers. More
specifically, we determine situations for which either classical or quantum
correlations are not uniquely defined due to degeneracies arising from the
optimization procedure over the state space. In order to remove such
degeneracies, we introduce a general approach where correlations are
independently defined, escaping therefore from a degenerate subspace. As an
illustration, we analyze the trace-norm geometric quantum discord for two-qubit
Bell-diagonal states.Comment: 5 pages, 2 figures. v2: Minor corrections. Published versio
Compactly Supported Wavelets Derived From Legendre Polynomials: Spherical Harmonic Wavelets
A new family of wavelets is introduced, which is associated with Legendre
polynomials. These wavelets, termed spherical harmonic or Legendre wavelets,
possess compact support. The method for the wavelet construction is derived
from the association of ordinary second order differential equations with
multiresolution filters. The low-pass filter associated with Legendre
multiresolution analysis is a linear phase finite impulse response filter
(FIR).Comment: 6 pages, 6 figures, 1 table In: Computational Methods in Circuits and
Systems Applications, WSEAS press, pp.211-215, 2003. ISBN: 960-8052-88-
Estimativa de custo de produção da cultura de café de média a alta tecnologia, Ouro Preto do Oeste, RO, 2007.
Este trabalho objetivou determinar o desempenho econĂ´mico do cultivo de cafĂ© robusta em condições de mĂ©dia a alta tecnologia no MunicĂpio de Ouro Preto do Oeste.bitstream/CPAF-RO-2010/14545/1/342-cafe.pd
Operational Classification and Quantification of Multipartite Entangled States
We formalize and extend an operational multipartite entanglement measure
introduced by T. R. Oliveira, G. Rigolin, and M. C. de Oliveira, Phys. Rev. A
73, 010305(R) (2006), through the generalization of global entanglement (GE)
[D. A. Meyer and N. R. Wallach, J. Math. Phys. 43, 4273 (2002)]. Contrarily to
GE the main feature of this measure lies in the fact that we study the mean
linear entropy of all possible partitions of a multipartite system. This allows
the construction of an operational multipartite entanglement measure which is
able to distinguish among different multipartite entangled states that GE
failed to discriminate. Furthermore, it is also maximum at the critical point
of the Ising chain in a transverse magnetic field, being thus able to detect a
quantum phase transition.Comment: 14 pages, RevTex4, published versio
Unintegrated parton distributions in nuclei
We study how unintegrated parton distributions in nuclei can be calculated
from the corresponding integrated partons using the EPS09 parametrization. The
role of nuclear effects is presented in terms of the ratio
for both large and small domains.Comment: 9 pages, 4 figure
Geometric classical and total correlations via trace distance
We introduce the concepts of geometric classical and total correlations
through Schatten 1-norm (trace norm), which is the only Schatten p-norm able to
ensure a well-defined geometric measure of correlations. In particular, we
derive the analytical expressions for the case of two-qubit Bell-diagonal
states, discussing the superadditivity of geometric correlations. As an
illustration, we compare our results with the entropic correlations, discussing
both their hierarchy and monotonicity properties. Moreover, we apply the
geometric correlations to investigate the ground state of spin chains in the
thermodynamic limit. In contrast to the entropic quantifiers, we show that the
classical correlation is the only source of 1-norm geometric correlation that
is able to signaling an infinite-order quantum phase transition.Comment: v2: published versio
- …