6 research outputs found

    Microscopy: advances in scientific research and education

    Get PDF
    Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Sperctroscopy (EDS) are two analysis techniques that are widely used to study all kinds of solid samples, from inorganic to biological. They are used to determine morphological features of interest at a micron and sub-micron level as well as to study the chemical composition of the samples in terms of the amount of each element present. Although these analytical techniques are “routine work” in many research areas, it is not the case of the dental area, mainly because the lack of this equipment in the dental research institutes and in dental schools. Therefore, in this chapter we show the SEM/EDS techniques applied to human dental samples when irradiated with a laser Er:YAG to prevent caries. The intention of this work is to show step by step this analysis showing the key variables to consider when working with this type of biological samples. We explain the SEM conditions to obtain satisfactory images especially when it is important to follow a sequence of steps of a treatment in-vitro that changes the morphological structure of the teeth surface. Also, we discuss the EDS analysis to semiquantitatively determine the elements and their abundance in the dental samples

    Electron evaporation of carbon using a high density plasma

    Get PDF
    High-density plasmas are often used either in the preparation of thin films or for the modification of surfaces; nitriding. However, except for collision-driven chemical reactions the electrons present are not used, although electron bombardment heating of the work piece nearly always occurs. Principally it is the ions and neutrals that are utilised for materials processing. By suitable biasing of a conducting source material the electrons can be extracted from a highdensity low-pressure plasma to such an extent that evaporation of this source material can be achieved. Due to the presence of the plasma and the flux of electrons a large proportion of the evaporant is expected to be ionised. We have used this novel arrangement to prepare thin films of carbon using a resonant high-density argon plasma and a water cooled rod of high purity graphite. Multiple substrates were used both outside of, and immersed in, the plasma. We report the characteristics of the plasma (electron temperature and density, the ion energy and flux, and optical emission spectra), the deposition process (the evaporation rate and ion/neutral ratio), and the film properties (IR and UV/Vis absorption spectra, Raman spectra, elemental analysis, hardness and refractive index

    Orange peel + nanostructured zero-valent-iron composite for the removal of hexavalent chromium in water

    No full text
    In this work we used the Pulsed Plasma in Liquid technique to synthesize zero-valent iron nanostructures. We used a DC Power Source to produce such plasma on water and methanol. The obtained particles were characterized by TEM to determine their shape and size and Mossbauer Spectroscopy to investigate the chemical state of the iron present. We found that 80% of the particles produced in water are composed of metallic iron and when methanol is used 97% of the particles are metallic iron. Once the Fe colloid was formed, orange skin was impregnated with these nanostructures for the removal of in water solution. The Cr(VI) removal experiments were done in a batch system in the presence of the composites at an inicial concentration of 50 ppm of Cr(VI). When using the iron nanostructures supported on the orange peel, the percentage of removal is 100% in the case of nanostructures formed in water and 96% when obtained in methanol

    Orange peel + nanostructured zero-valent-iron composite for the removal of hexavalent chromium in water

    No full text
    In this work we used the Pulsed Plasma in Liquid technique to synthesize zero-valent iron nanostructures. We used a DC Power Source to produce such plasma on water and methanol. The obtained particles were characterized by TEM to determine their shape and size and Mossbauer Spectroscopy to investigate the chemical state of the iron present. We found that 80% of the particles produced in water are composed of metallic iron and when methanol is used 97% of the particles are metallic iron. Once the Fe colloid was formed, orange skin was impregnated with these nanostructures for the removal of in water solution. The Cr(VI) removal experiments were done in a batch system in the presence of the composites at an inicial concentration of 50 ppm of Cr(VI). When using the iron nanostructures supported on the orange peel, the percentage of removal is 100% in the case of nanostructures formed in water and 96% when obtained in methanol
    corecore