68 research outputs found

    Genome structure of the Lactobacillus temperate phage Φg1e: the whole genome sequence and the putative promoter/repressor system

    Get PDF
    The complete genome sequence of a Lactobacillus temperate phage Φg1e was established. The double-stranded DNA is composed of 42 259 bp, and encodes for sixty-two possible open reading frames (ORF) as well as several potential regulatory sequences. Based on comparative analysis with other related proteins of the Lactobacillus and Lactococcus phages as well as the Escherichia coli phages (such as lambda), functions were putatively assigned to several Φg1e ORFs: cng and cpg (encoding for repressors), hel (helicase), ntp (NTPase), and several ORFs (e.g., minor capsid proteins). An about 1000-bp DNA region of Φg1e containing cpg and cng was inferred to function as a promoter/repressor system for the Φg1e lysogenic and lytic pathway

    Hayabusa2’s superior solar conjunction mission operations: planning and post-operation results

    Get PDF
    Abstract In late 2018, the asteroid Ryugu was in the Sun’s shadow during the superior solar conjunction phase. As the Sun-Earth-Ryugu angle decreased to below 3°, the Hayabusa2 spacecraft experienced 21 days of planned blackout in the Earth-probe communication link. This was the first time a spacecraft had experienced solar conjunction while hovering around a minor body. For the safety of the spacecraft, a low energy transfer trajectory named Ayu was designed in the Hill reference frame to increase its altitude from 20 to 110 km. The trajectory was planned with the newly developed optNEAR tool and validated with real time data. This article shows the results of the conjunction operation, from planning to flight data.</jats:p

    シンポジウム報告 日本の管弦楽作品の演奏譜に於ける課題と展望 : 演奏譜は文化だ!

    Get PDF
    シンポジウム主催:東京音楽大学付属図書館、オーケストラ・ニッポニカ開催日時:2013年12月7日 (東京音楽大学付属図書館5階)総合司会:林淑姫内容:経過報告「オーケストラ・ニッポニカ十年の活動の中で考えたこと、感じたこと」 / 加藤のぞみ発表日本人作品演奏と演奏譜――「オーケストラ・ニッポニカ・アーカイヴ」の意義 / 小沼純一神戸女学院大学「大澤壽人プロジェクト」について / 生島美紀子日本人作品上演と楽譜の所在――オーケストラ・ライブラリアン会議での討議から / 沖あかね全音レンタル楽譜事業と課題 / 高木雅也オーケストラ・ニッポニカの経験から / 奥平

    発症早期ALS患者に対する超高用量メチルコバラミンの有効性・安全性について : ランダム化比較試験

    Get PDF
    Importance: Post hoc analysis in a phase 2/3 trial indicated ultra-high dose methylcobalamin slowed decline of the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) total score at week 16 as well as at week 182, without increase of adverse events, in patients with amyotrophic lateral sclerosis (ALS) who were enrolled within 1 year from onset. Objective: To validate the efficacy and safety of ultra-high dose methylcobalamin for patients with ALS enrolled within 1 year of onset. Design: A multicenter, placebo-controlled, double-blind, randomized phase 3 trial with 12-week observation and 16-week randomized period, conducted from October 2017 to September 2019. Setting: Twenty-five neurology centers in Japan. Participants: Patients with ALS diagnosed within 1 year of onset by the updated Awaji criteria were initially enrolled. Of those, patients fulfilling the following criteria after 12-week observation were eligible for randomization: 1- or 2-point decrease in ALSFRS-R total score, a percent forced vital capacity over 60%, no history of noninvasive respiratory support and tracheostomy, and being ambulant. The target number was 64 in both methylcobalamin and placebo groups. Of 203 patients enrolled in the observation, 130 patients (age, 61.0 ± 11.7 years; female, 56) met the criteria and were randomly assigned through an electronic web-response system to methylcobalamin or placebo (65 for each). Of these, 129 patients were eligible for the full analysis set, and 126 completed the double-blind stage. Interventions: Intramuscular injection of methylcobalamin 50 mg or placebo twice weekly for 16 weeks. Main outcomes and measures: The primary endpoint was change in ALSFRS-R total score from baseline to week 16 in the full analysis set. Results: The least-squares mean difference in ALSFRS-R total score at week 16 of the randomized period was 1.97 points greater with methylcobalamin than placebo (−2.66 versus −4.63; 95% CI, 0.44–3.50; P = 0.012). The incidence of adverse events was similar between the two groups. Conclusions and relevance: Ultra-high dose methylcobalamin was efficacious in slowing functional decline and safe in the 16-week treatment period in ALS patients in the early stage and with moderate progression rate. Trial registration: UMIN-CTR Identifier: UMIN000029588 (umin.ac.jp/ctr); ClinicalTrials.gov Identifier: NCT03548311 (clinicaltrials.gov

    Yrb1p Interaction with the Gsp1p C Terminus Blocks Mog1p Stimulation of GTP Release from Gsp1p

    No full text

    A protein required for nuclear-protein import, Mog1p, directly interacts with GTP–Gsp1p, the Saccharomyces cerevisiae Ran homologue

    No full text
    We previously isolated 25 temperature-sensitive gsp1 alleles of Saccharomyces cerevisiae Ran homologue, each of which possesses amino acid changes that differ from each other. We report here isolation of three multicopy suppressors—PDE2, NTF2, and a gene designated MOG1—all of which rescued a growth defect of these gsp1 strains. The gsp1 suppression occurred even in the absence of GSP2, another S. cerevisiae GSP1-like gene. Previously, NTF2 was reported to suppress gsp1 but not PDE2. Mog1p, with a calculated molecular mass of 24 kDa, was found to be encoded by the yeast ORF YJR074W. Both MOG1 and NTF2 suppressed a series of gsp1 alleles with similar efficiency, and both suppressed gsp1 even with a single gene dose. Consistent with the high efficiency of gsp1 suppression, Mog1p directly bound to GTP, but not to GDP-Gsp1p. The disruption of MOG1 made yeast temperature-sensitive for growth. Δmog1, which was suppressed by overexpression of NTF2, was found to have a defect in both classic and nonclassic nuclear localization signal-dependent nuclear-protein imports, but not in mRNA export. Thus, Mog1p, which was localized in the nucleus, is a Gsp1p-binding protein involved in nuclear-protein import and that functionally interacts with Ntf2p. Furthermore, the finding that PDE2 suppressed both gsp1 and rna1–1 indicates that the Ran GTPase cycle is regulated by the Ras-cAMP pathway

    Blockers and barriers to transcription: competing activities?

    No full text
    In the eukaryotic cell active and inactive genes reside adjacent to one another and are modulated by numerous regulatory elements. Insulator elements prevent the misregulation of adjacent genes by restricting the effects of the regulatory elements to specific domains. Enhancer blockers prevent enhancers from inadvertently activating neighboring genes, and recent results suggest that they might function by a conserved mechanism across species. These elements appear to disrupt enhancer-promoter ‘communications’ by interacting with the regulatory elements and sequestering these elements into specific regions of the nucleus thus rendering them non-functional. Barrier elements insulate active genes from neighboring heterochromatin and recent results suggest that they function by specific localized recruitment of acetyltransferases that antagonize the spread of heterochromatin-associated deacetylases, thus preventing the propagation of heterochromatin

    Spt3 and Spt8 Are Involved in the Formation of a Silencing Boundary by Interacting with TATA-Binding Protein

    No full text
    In Saccharomyces cerevisiae, a heterochromatin-like chromatin structure called the silencing region is present at the telomere as a complex of Sir2, Sir3, and Sir4. Although spreading of the silencing region is blocked by histone acetylase-mediated boundary formation, the details of the factors and mechanisms involved in the spread and formation of the boundary at each telomere are unknown. Here, we show that Spt3 and Spt8 block the spread of the silencing regions. Spt3 and Spt8 are members of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, which has histone acetyltransferase activity. We performed microarray analysis of the transcriptome of spt3Δ and spt8Δ strains and RT-qPCR analysis of the transcript levels of genes from the subtelomeric region in mutants in which the interaction of Spt3 with TATA-binding protein (TBP) is altered. The results not only indicated that both Spt3 and Spt8 are involved in TBP-mediated boundary formation on the right arm of chromosome III, but also that boundary formation in this region is DNA sequence independent. Although both Spt3 and Spt8 interact with TBP, Spt3 had a greater effect on genome-wide transcription. Mutant analysis showed that the interaction between Spt3 and TBP plays an important role in the boundary formation
    corecore