3,336 research outputs found
System Cu-Rh-O: Phase diagram and thermodynamic properties of ternary oxides CuRhO<sub>2</sub> and CuRh<sub>2</sub>O<sub>4</sub>
An isothermal section of the phase diagram for the system Cu-Rh-O at 1273 K has been established by equilibration of samples representing eighteen different compositions, and phase identification after quenching by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). In addition to the binary oxides Cu2O, CuO, and Rh2O3, two ternary oxides CuRhO2 and CuRh2O4 were identified. Both the ternary oxides were in equilibrium with metallic Rh. There was no evidence of the oxide Cu2Rh2O5 reported in the literature. Solid alloys were found to be in equilibrium with Cu2O. Based on the phase relations, two solid-state cells were designed to measure the Gibbs energies of formation of the two ternary oxides. Yttria-stabilized zirconia was used as the solid electrolyte, and an equimolar mixture of Rh+Rh2O3 as the reference electrode. The reference electrode was selected to generate a small electromotive force (emf), and thus minimize polarization of the three-phase electrode. When the driving force for oxygen transport through the solid electrolyte is small, electrochemical flux of oxygen from the high oxygen potential electrode to the low potential electrode is negligible. The measurements were conducted in the temperature range from 900 to 1300 K. The thermodynamic data can be represented by the following equations:
1/2Cu20+Rh203→CuRhO2
Af(ox)G°/J mol-1 = - 18,040 + 0.975 T/K (+ 40)
CuO + Rh203 →CuRh204
Af(ox)G°/J mol-1 = - 23,760 + 1-92 TIK (+ 325),
where Îf(ox) Go is the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides. Based on the thermodynamic information, chemical potential diagrams for the system Cu-Rh-O were developed
Contactless electrochemical reduction of titanium (II) chloride by aluminum
Because of the strong affinity between aluminum and titanium, it has not been possible to produce pure titanium by direct aluminothermic reduction of titanium chlorides. Described in this article is a new process for contactless reduction of titanium dichloride by aluminum in which titanium dichloride and the reductant (aluminum or aluminum alloy) were physically separated, but electrochemically connected through molten NaCl and an external circuit. Titanium dichloride was spontaneously reduced to metal by a cathodic reaction with the simultaneous discharge of chlorine ions into the melt. At the anode, metal aluminum was oxidized to form aluminum chloride dissolved in the molten salt. The electrons were transferred between the electrodes through the external circuit. The concentration of aluminum in titanium produced at 1223 and 1273 K varied from values below the detection limit of the X-ray fluorescence analysis (0.01 mass pct) to 4.5 mass pct. The average contamination was 0.76 mass pct Al. When an aluminum-nickel alloy was used as the reductant, nickel was not detected in the titanium obtained by reduction. This observation suggests that aluminum scrap may be used as a cheap reductant in this contactless electrochemical process
Spin Wave Instability of Itinerant Ferromagnet
We show variationally that instability of the ferromagnetic state in the
Hubbard model is largely controlled by softening of a long-wavelength spin-wave
excitation, except in the over-doped strong-coupling region where the
individual-particle excitation becomes unstable first. A similar conclusion is
drawn also for the double exchange ferromagnet. Generally the spin-wave
instability may be regarded as a precursor of the metal-insulator transition.Comment: 11 pages, 8 figure
Local electronic structure of interstitial hydrogen in MgH inferred from muon study
Magnesium hydride has great potential as a solid hydrogen (H) storage
material because of its high H storage capacity of 7.6 wt%. However, its slow
hydrogenation and dehydrogenation kinetics and the high temperature of 300
C required for decomposition are major obstacles to small-scale
applications such as automobiles. The local electronic structure of
interstitial H in MgH is an important fundamental knowledge in solving this
problem, which has been studied mainly based on density functional theory
(DFT). However, few experimental studies have been performed to assess the
results of DFT calculations. We have therefore introduced muon (Mu) as pseudo-H
into MgH and investigated the corresponding interstitial H states by
analyzing their electronic and dynamical properties in detail. As a result, we
observed multiple Mu states similar to those observed in wide-gap oxides, and
found that their electronic states can be attributed to relaxed-excited states
associated with donor/acceptor levels predicted by the recently proposed
"ambipolarity model". This provides an indirect support for the DFT
calculations on which the model is based via the donor/acceptor levels. An
important implication of the muon results for improved hydrogen kinetics is
that dehydrogenation, serving as a for hydrides, stabilizes the
interstitial H state.Comment: 14 pages, 9 figure
Important role of the spin-orbit interaction in forming the 1/2^+ orbital structure in Be isotopes
The structure of the second 0^+ state of ^{10}Be is investigated using a
microscopic model based on the molecular-orbit (MO) model.
The second 0^+ state, which has dominantly the (1/2^+)^2 configuration, is
shown to have a particularly enlarged structure. The kinetic
energy of the two valence neutrons occupying along the axis is
reduced remarkably due to the strong clustering and, simultaneously,
the spin-orbit interaction unexpectedly plays important role to make the energy
of this state much lower. The mixing of states with different spin structure is
shown to be important in negative-parity states. The experimentally observed
small-level spacing between 1^- and 2^- (~ 300 keV) is found to be an evidence
of this spin-mixing effect. ^{12}{Be} is also investigated using
model, in which four valence neutrons are considered to
occupy the (3/2^-)^2(1/2^+)^2 configuration. The energy surface of ^{12}Be is
shown to exhibit similar characteristics, that the remarkable
clustering and the contribution of the spin-orbit interaction make the binding
of the state with (3/2^-)^2(1/2^+)^2 configuration properly stronger in
comparison with the closed p-shell (3/2^-)^2(1/2^-)^2 configuration.Comment: 14 pages, 4 figure
Phases of granular segregation in a binary mixture
We present results from an extensive experimental investigation into granular
segregation of a shallow binary mixture in which particles are driven by
frictional interactions with the surface of a vibrating horizontal tray. Three
distinct phases of the mixture are established viz; binary gas (unsegregated),
segregation liquid and segregation crystal. Their ranges of existence are
mapped out as a function of the system's primary control parameters using a
number of measures based on Voronoi tessellation. We study the associated
transitions and show that segregation can be suppressed is the total filling
fraction of the granular layer, , is decreased below a critical value,
, or if the dimensionless acceleration of the driving, , is
increased above a value .Comment: 12 pages, 12 figures, submitted to Phys. Rev.
The perimeter of large planar Voronoi cells: a double-stranded random walk
Let be the probability for a planar Poisson-Voronoi cell to have
exactly sides. We construct the asymptotic expansion of up to
terms that vanish as . We show that {\it two independent biased
random walks} executed by the polar angle determine the trajectory of the cell
perimeter. We find the limit distribution of (i) the angle between two
successive vertex vectors, and (ii) the one between two successive perimeter
segments. We obtain the probability law for the perimeter's long wavelength
deviations from circularity. We prove Lewis' law and show that it has
coefficient 1/4.Comment: Slightly extended version; journal reference adde
Rhythmic Growth of Target and Spiral Spherulites of Crystalline Polymer Blends
Numerical calculations reveal that the target and spiral growth patterns in spherulites can be generated from the time-dependent Ginzburg-Landau equations (model C) by coupling a conserved compositional order parameter and a nonconserved crystal ordering parameter. Of particular interest is that the periodic concentric rings (target) or the spirals at the spherulitic core remain stationary in both the crystal (orientational) ordering field and the concentration field. Another intriguing observation is that the growth of target and spiral spherulites occurs in a stepwise fashion in synchronism with the rhythmic energy dissipation during crystallization
- âŠ