44 research outputs found

    Effectiveness of interspinous implant surgery in patients with intermittent neurogenic claudication: a systematic review and meta-analysis

    Get PDF
    Item does not contain fulltextINTRODUCTION: Despite an increasing implantation rate of interspinous process distraction (IPD) devices in the treatment of intermittent neurogenic claudication (INC), definitive evidence on the clinical effectiveness of implants is lacking. The main objective of this review was to perform a meta-analysis of all systematic reviews, randomized clinical trials and prospective cohort series to quantify the effectiveness of IPDs and to evaluate the potential side-effects. METHODS: Data from all studies prospectively describing clinical results based on validated outcome scales and reporting complications of treatment of patients with INC with IPD placement. We searched MEDLINE, EMBASE, Web of Science, Cochrane (CENTRAL), CINAHL, Academic Search Premier, Science Direct up to July 2010. Studies describing patients with INC caused by lumbar stenosis, reporting complication rate and reporting based on validated outcome scores, were eligible. Studies with only instrumented IPD results were excluded. RESULTS: Eleven studies eligible studies were identified. Two independently RCTs and eight prospective cohorts were available. In total 563 patients were treated with IPDs. All studies showed improvement in validated outcome scores after 6 weeks and 1 year. Pooled data based on the Zurich Claudication Questionnaire of the RCTs were more in favor of IPD treatment compared with conservative treatment (pooled estimate 23.2, SD 18.5-27.8). Statistical heterogeneity after pooled data was low (I-squared 0.0, p = 0.930). Overall complication rate was 7%. CONCLUSION: As the evidence is relatively low and the costs are high, more thorough (cost-) effectiveness studies should be performed before worldwide implementation is introduced

    Molecular marks for epigenetic identification of developmental and cancer stem cells

    Get PDF
    Epigenetic regulations of genes by reversible methylation of DNA (at the carbon-5 of cytosine) and numerous reversible modifications of histones play important roles in normal physiology and development, and epigenetic deregulations are associated with developmental disorders and various disease states, including cancer. Stem cells have the capacity to self-renew indefinitely. Similar to stem cells, some malignant cells have the capacity to divide indefinitely and are referred to as cancer stem cells. In recent times, direct correlation between epigenetic modifications and reprogramming of stem cell and cancer stem cell is emerging. Major discoveries were made with investigations on reprogramming gene products, also known as master regulators of totipotency and inducer of pluoripotency, namely, OCT4, NANOG, cMYC, SOX2, Klf4, and LIN28. The challenge to induce pluripotency is the insertion of four reprogramming genes (Oct4, Sox2, Klf4, and c-Myc) into the genome. There are always risks of silencing of these genes by epigenetic modifications in the host cells, particularly, when introduced through retroviral techniques. In this contribution, we will discuss some of the major discoveries on epigenetic modifications within the chromatin of various genes associated with cancer progression and cancer stem cells in comparison to normal development of stem cell. These modifications may be considered as molecular signatures for predicting disorders of development and for identifying disease states

    Differential bone marrow aspirate DNA yields from commercial extraction kits

    No full text
    corecore