85 research outputs found

    A method for the ECG inverse problem in the frequency domain

    Get PDF

    Professional development and research are being neglected: a commentary on the 2019 RCR radiologists’ supporting professional activities (SPA) survey

    Get PDF
    When the National Health Service (NHS) acquired a statutory duty of care for quality in 1998, clinical governance became a mandatory and intrinsic part of modern medicine. Defined as “a framework through which NHS organisations are accountable for continuously improving the quality of their services and safe-guarding high standards of care by creating an environment in which excellence in clinical care will flourish”,1 the vehicle for NHS consultants to enact clinical governance was supporting professional activity (SPA). All activities that underpin direct clinical care (DCC) are encouraged during SPA time, including professional development, research, audit, teaching, clinical management, appraisal, and job planning.2,3 Adequate time for SPAs alongside DCC is therefore crucial for NHS consultants to\ud maintain excellence in clinical care.3 The recently published Royal College of Radiologists (RCR) Survey on Radiologists’ SPA4 has demonstrated three recurring themes, which are widely recognised to be growing concerns for our specialty

    Vesicle miR-195 derived from endothelial cells inhibits expression of serotonin transporter in vessel smooth muscle cells

    Get PDF
    Serotonin or 5-hydroxytryptamine (5-HT) has been shown to be essential in lots of physiological and pathological processes. It is well known that 5-HT and 5-HT transporter (5-HTT) play important roles in the pulmonary artery in pulmonary hypertension. However, little is known about the function of 5-HTT in other arteries. In this study we found that the expression of 5-HTT was elevated in injured carotid arteries and over-expression of 5-HTT induced proliferation of smooth muscle cells (SMCs); however, this phenotype could be reversed by knocking-down of 5-HTT or endothelial cells conditional medium (EC-CM). A 5-HTT inhibitor, fluoxetine, treated animals also exhibited reduced restenosis after injury. We identified that miR-195 was packaged in the extracellular vesicles from EC-CM. We further confirmed that extracellular vesicles could transfer miR-195 from ECs to SMCs to inhibit the expression of 5-HTT in SMCs and the proliferation of SMCs. These results provide the first evidence that ECs communicate with SMCs via micro-RNA195 in the regulation of the proliferation of SMCs through 5-HTT, which will contribute to a better understanding of communications between ECs and SMCs via micro-RNA. Our findings suggest a potential target for the control of vessel restenosis

    Treatment of glenohumeral instability in rugby players

    Get PDF
    Rugby is a high-impact collision sport, with impact forces. Shoulder injuries are common and result in the longest time off sport for any joint injury in rugby. The most common injuries are to the glenohumeral joint with varying degrees of instability. The degree of instability can guide management. The three main types of instability presentations are: (1) frank dislocation, (2) subluxations and (3) subclinical instability with pain and clicking. Understanding the exact mechanism of injury can guide diagnosis with classical patterns of structural injuries. The standard clinical examination in a large, muscular athlete may be normal, so specific tests and techniques are needed to unearth signs of pathology. Taking these factors into consideration, along with the imaging, allows a treatment strategy. However, patient and sport factors need to be also considered, particularly the time of the season and stage of sporting career. Surgery to repair the structural damage should include all lesions found. In chronic, recurrent dislocations with major structural lesions, reconstruction procedures such as the Latarjet procedure yields better outcomes. Rehabilitation should be safe, goal-driven and athlete- specific. Return to sport is dependent on a number of factors, driven by the healing process, sport requirements and extrinsic pressures

    Inhibition of transforming growth factor α (TGF-α)-mediated growth effects in ovarian cancer cell lines by a tyrosine kinase inhibitor ZM 252868

    Get PDF
    The modulating effects of the epidermal growth factor (EGF) receptor-specific tyrosine kinase inhibitor ZM 252868 on cell growth and signalling have been evaluated in four ovarian carcinoma cell lines PE01, PE04, SKOV-3 and PE01CDDP. Transforming growth factor α (TGF-α)-stimulated growth was completely inhibited by concentrations ≄ 0.3 ÎŒM in the PE01 and PE04 cell lines and by ≄ 0.1 ÎŒM in SKOV-3 cells. TGF-α inhibition of PE01CDDP growth was reversed by concentrations ≄ 0.1 ÎŒM ZM 252868. TGF-α-stimulated tyrosine phosphorylation of both the EGF receptor and c-erbB2 receptor in all four cell lines. The inhibitor ZM 252868, at concentrations ≄ 0.3 ÎŒM, completely inhibited TGF-α-stimulated tyrosine phosphorylation of the EGF receptor and reduced phosphorylation of the c-erbB2 protein. EGF-activated EGF receptor tyrosine kinase activity was completely inhibited by 3 ÎŒM ZM 252868 in PE01, SKOV-3 and PE01CDDP cells. These data indicate that the EGF receptor-targeted TK inhibitor ZM 252868 can inhibit growth of ovarian carcinoma cells in vitro consistent with inhibition of tyrosine phosphorylation at the EGF receptor. © 1999 Cancer Research Campaig

    An integrated ultrasound curriculum (iUSC) for medical students: 4-year experience

    Get PDF
    A review of the development and implementation of a 4-year medical student integrated ultrasound curriculum is presented. Multiple teaching and assessment modalities are discussed as well as results from testing and student surveys. Lessons learned while establishing the curriculum are summarized. It is concluded that ultrasound is a well received, valuable teaching tool across all 4 years of medical school, and students learn ultrasound well, and they feel their ultrasound experience enhances their medical education

    Metabolic inactivation of estrogens in breast tissue by UDP-glucuronosyltransferase enzymes: an overview

    Get PDF
    The breast tissue is the site of major metabolic conversions of estradiol (E(2)) mediated by specific cytochromes P450 hydroxylations and methylation by catechol-O-methytransferase. In addition to E(2 )itself, recent findings highlight the significance of 4-hydroxylated estrogen metabolites as chemical mediators and their link to breast cancer development and progression, whereas, in opposition, 2-methoxylated estrogens appear to be protective. Recent data also indicate that breast tissue possesses enzymatic machinery to inactivate and eliminate E(2 )and its oxidized and methoxylated metabolites through conjugation catalyzed by UDP-glucuronosyltransferases (UGTs), which involves the covalent addition of glucuronic acid. In opposition to other metabolic pathways of estrogen, the UGT-mediated process leads to the formation of glucuronides that are devoid of biologic activity and are readily excreted from the tissue into the circulation. This review addresses the most recent findings on the identification of UGT enzymes that are responsible for the glucuronidation of E(2 )and its metabolites, and evidence regarding their potential role in breast cancer
    • 

    corecore