111 research outputs found

    An integrative view of mammalian seasonal neuroendocrinology

    Get PDF
    This is the peer reviewed version of the following article: Dardente, H., Wood, S.H., Ebling, F. & Sáenz de Miera, C. (2019). An integrative view of mammalian seasonal neuroendocrinology. Journal of neuroendocrinology. Journal of Neuroendocrinology, 31(5), e12729, which has been published in final form at https://doi.org/10.1111/jne.12729. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Seasonal neuroendocrine cycles that govern annual changes in reproductive activity, energy metabolism and hair growth are almost ubiquitous in mammals that have evolved at temperate and polar latitudes. Changes in nocturnal melatonin secretion regulating gene expression in the pars tuberalis (PT) of the pituitary stalk are a critical common feature in seasonal mammals. The PT sends signal(s) to the pars distalis of the pituitary to regulate prolactin secretion and thus the annual moult cycle. The PT also signals in a retrograde manner via thyroid‐stimulating hormone to tanycytes, which line the ventral wall of the third ventricle in the hypothalamus. Tanycytes show seasonal plasticity in gene expression and play a pivotal role in regulating local thyroid hormone (TH) availability. Within the mediobasal hypothalamus, the cellular and molecular targets of TH remain elusive. However, two populations of hypothalamic neurones, which produce the RF‐amide neuropeptides kisspeptin and RFRP3 (RF‐amide related peptide 3), are plausible relays between TH and the gonadotrophin‐releasing hormone‐pituitary‐gonadal axis. By contrast, the ways by which TH also impinges on hypothalamic systems regulating energy intake and expenditure remain unknown. Here, we review the neuroendocrine underpinnings of seasonality and identify several areas that warrant further research

    A preliminary study on the induction of dioestrous ovulation in the mare – a possible method for inducing prolonged luteal phase

    Get PDF
    BACKGROUND: Strong oestrous symptoms in the mare can cause problems with racing, training and handling. Since long-acting progesterone treatment is not permitted in mares at competition (e.g. according to FEI rules), there is a need for methods to suppress unwanted cyclicity. Spontaneous dioestrous ovulations in the late luteal phase may cause a prolongation of the luteal phase in mares. METHODS: In this preliminary study, in an attempt to induce ovulation during the luteal phase, human chorionic gonadotropin (hCG) (3000 IU) was injected intramuscularly in four mares (experimental group) in the luteal phase when a dioestrous follicle ≥ 30 mm was detected. A fifth mare included in this group was not treated due to no detectable dioestrous follicles ≥ 30 mm. Four control mares were similarly injected with saline. The mares were followed with ultrasound for 72 hours post injection or until ovulation. Blood samples for progesterone analysis were obtained twice weekly for one month and thereafter once weekly for another two to four months. RESULTS: Three of the hCG-treated mares ovulated within 72 hours after treatment and developed prolonged luteal phases of 58, 68 and 82 days respectively. One treated mare never ovulated after the hCG injection and progesterone levels fell below 3 nmol/l nine days post treatment. Progesterone levels in the control mares were below 3 nmol/l within nine days after saline injection, except for one mare, which developed a spontaneously prolonged luteal phase of 72 days. CONCLUSION: HCG treatment may be a method to induce prolonged luteal phases in the mare provided there is a dioestrous follicle ≥ 30 mm that ovulates post-treatment. However, the method needs to be tested on a larger number of mares to be able to draw conclusions regarding its effectiveness

    Oestradiol-17β plasma concentrations after intramuscular injection of oestradiol benzoate or oestradiol cypionate in llamas (Lama glama)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Llamas (<it>Lama glama</it>) are induced ovulators and the process of ovulation depends on dominant follicular size. In addition, a close relationship between behavioural estrus and ovulation is not registered in llamas. Therefore, the exogenous control of follicular development with hormones aims to predict the optimal time to mate. Oestradiol-17β (E<sub>2</sub>) and its esters are currently used in domestic species, including camelids, in synchronization treatments. But, in llamas, there is no reports regarding the appropriate dosages to be used and most protocols have been designed by extrapolation from those recommended for other ruminants. The aim of the present study was to characterize plasma E<sub>2 </sub>concentrations in intact female llamas following a single intramuscular (i.m.) injection of two oestradiol esters: oestradiol benzoate (EB) and oestradiol cypionate (ECP).</p> <p>Methods</p> <p>Twelve non pregnant and non lactating sexually mature llamas were i.m. injected on day 0 with 2.5 mg of EB (EB group, n = 6) or ECP (ECP group, n = 6). Blood samples were collected immediately before injection, at 1, 6, 12, 24 h after treatment and then daily until day 14 post injection. Changes in hormone concentrations with time were analyzed in each group by analysis of variance (ANOVA) using a repeated measures (within-SS) design. Plasma E<sub>2 </sub>concentrations and area under the concentration-time curve (AUC) values were compared between groups by ANOVA. In all cases a Least-Significant Difference test (LSD) was used to determine differences between means. Hormonal and AUC data are expressed as mean ± S.E.M.</p> <p>Results</p> <p>Peak plasma E<sub>2 </sub>concentrations were achieved earlier and were higher in EB group than in ECP group. Thereafter, E<sub>2 </sub>returned to physiological concentrations earlier in EB group (day 5) than in ECP group (day 9). Although plasma E<sub>2 </sub>profiles differed over time among groups there were no differences between them on AUC values.</p> <p>Conclusions</p> <p>The i.m. injection of a single dose of both oestradiol esters resulted in plasma E<sub>2 </sub>concentrations exceeding physiological values for a variable period. Moreover, the plasma E<sub>2 </sub>profiles observed depended on the derivative of oestradiol administered. This basic information becomes relevant at defining treatment protocols including oestrogens in llamas.</p

    Gene Expression Profiling of Preovulatory Follicle in the Buffalo Cow: Effects of Increased IGF-I Concentration on Periovulatory Events

    Get PDF
    The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development
    corecore