350 research outputs found

    Dynamic Aspects of Cortical Rhythmic Activities

    Get PDF

    Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in the dendritic cell-based vaccine.

    Get PDF
    Given the close interaction between tumor cells and stromal cells in the tumor microenvironment (TME), TME-targeted strategies would be promising for developing integrated cancer immunotherapy. Cancer-associated fibroblasts (CAFs) are the dominant stromal component, playing critical roles in generation of the pro-tumorigenic TME. We focused on the immunosuppressive trait of CAFs, and systematically explored the alteration of tumor-associated immune responses by CAF-targeted therapy. C57BL/6 mice s.c. bearing syngeneic E.G7 lymphoma, LLC1 Lewis lung cancer, or B16F1 melanoma were treated with an anti-fibrotic agent, tranilast, to inhibit CAF function. The infiltration of immune suppressor cell types, including regulatory T cells and myeloid-derived suppressor cells, in the TME was effectively decreased through reduction of stromal cell-derived factor-1, prostaglandin E2 , and transforming growth factor-β. In tumor-draining lymph nodes, these immune suppressor cell types were significantly decreased, leading to activation of tumor-associated antigen-specific CD8(+) T cells. In addition, CAF-targeted therapy synergistically enhanced multiple types of systemic antitumor immune responses such as the cytotoxic CD8(+) T cell response, natural killer activity, and antitumor humoral immunity in combination with dendritic cell-based vaccines; however, the suppressive effect on tumor growth was not observed in tumor-bearing SCID mice. These data indicate that systemic antitumor immune responses by various immunologic cell types are required to bring out the efficacy of CAF-targeted therapy, and these effects are enhanced when combined with effector-stimulatory immunotherapy such as dendritic cell-based vaccines. Our mouse model provides a novel rationale with TME-targeted strategy for the development of cell-based cancer immunotherapy.雑誌掲載時のタイトル: Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine滋賀医科大学平成26年

    On an isoperimetric sequence

    Get PDF

    Volume, Surface-Area and Total-Mean-Curvature

    Get PDF

    A New Characterization of the Sphere and the Isoperimetric Problem in E3

    Get PDF

    The Effects of Applied Negative Bias Voltage on Structure and Optical Properties of a-C:H Films

    Get PDF
    Hydrogenated amorphous carbon (a-C:H) films have been synthesized by a radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique with different bias voltage from 0.0 to -0.5 kV. The Raman spectra displayed the polymer-like hydrogenated amorphous carbon (PLCH) film with 0.0 to -0.1 and a-C:H films with -0.2 to -0.5 kV of bias voltages. The surface chemical information of all films were studied by X-ray photo electron spectroscopy (XPS) technique, presented to C-C (sp2 and sp3) and C-O bonds, and relative carbon (C) and oxygen (O) atomics contents. The O contamination had affected on structure and optical properties. The true density of PLCH and a-C:H films were characterized by X-ray refractivity (XRR) method, showed the result as in the range of 1.16-1.73 g/cm3 that depending on an increasing of bias voltage. The hardness was proportional to the true density of films. In addition, the optical properties i.e. refractive index (n) and extinction coefficient (k) of these films were determined by a spectroscopic ellipsometry (SE) method that give formation to in 1.62-2.10 (n) and 0.04-0.15 (k) respectively. These results indicated that the optical properties confirmed the Raman results as presenting the structure changed with applied bias voltage increased

    The Effects of Applied Negative Bias Voltage on Structure and Optical Properties of a-C:H Films

    Get PDF
    Hydrogenated amorphous carbon (a-C:H) films have been synthesized by a radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique with different bias voltage from 0.0 to -0.5 kV. The Raman spectra displayed the polymer-like hydrogenated amorphous carbon (PLCH) film with 0.0 to -0.1 and a-C:H films with -0.2 to -0.5 kV of bias voltages. The surface chemical information of all films were studied by X-ray photo electron spectroscopy (XPS) technique, presented to C-C (sp2 and sp3) and C-O bonds, and relative carbon (C) and oxygen (O) atomics contents. The O contamination had affected on structure and optical properties. The true density of PLCH and a-C:H films were characterized by X-ray refractivity (XRR) method, showed the result as in the range of 1.16-1.73 g/cm3 that depending on an increasing of bias voltage. The hardness was proportional to the true density of films. In addition, the optical properties i.e. refractive index (n) and extinction coefficient (k) of these films were determined by a spectroscopic ellipsometry (SE) method that give formation to in 1.62-2.10 (n) and 0.04-0.15 (k) respectively. These results indicated that the optical properties confirmed the Raman results as presenting the structure changed with applied bias voltage increased
    corecore