307 research outputs found

    A Possibility to Observe Short-Range NN Properties in the Deuteron Breakup pdppnpd\to ppn

    Get PDF
    Quasi-binary reaction of the deuteron breakup p+d(pp)+np+d\to (pp)+n with the final proton-proton pair (pp)(pp) in the 1S0^1S_0 state is analyzed at initial energies 0.520.5 - 2 GeV in the kinematics of backward elastic pd-scattering pddppd\to dp. On the basis of the main mechanisms of the pddppd\to dp process, including initial and final state interaction, we show that unpolarized cross section and spin observables of this reaction exhibit important properties of the half-off-shell pp(1S0)pp(^1S_0)-scattering amplitude, which are relevant to the nucleon-nucleon interaction at short distances.Comment: 9 pages, Latex, 3 Postscript figure

    Tensor polarization of deuterons passing through matter

    Full text link
    It is shown that the magnitude of tensor polarization of the deuteron beam, which arises owing to the spin dichroism effect, depends appreciably on the angular width of the detector that registers the deuterons transmitted through the target. Even when the angular width of the detector is much smaller than the mean square angle of multiple Coulomb scattering, the beam's tensor polarization depends noticeably on rescattering. When the angular width of the detector is much larger than the mean square angle of multiple Coulomb scattering (as well as than the characteristic angle of elastic nuclear scattering), tensor polarization is determined only by the total reaction cross sections for deuteron-nucleus interaction, and elastic scattering processes make no contribution to tensor polarization.Comment: 18 pages, 3 figures, to be published in IO

    Bistability of Slow and Fast Traveling Waves in Fluid Mixtures

    Full text link
    The appearence of a new type of fast nonlinear traveling wave states in binary fluid convection with increasing Soret effect is elucidated and the parameter range of their bistability with the common slower ones is evaluated numerically. The bifurcation behavior and the significantly different spatiotemporal properties of the different wave states - e.g. frequency, flow structure, and concentration distribution - are determined and related to each other and to a convenient measure of their nonlinearity. This allows to derive a limit for the applicability of small amplitude expansions. Additionally an universal scaling behavior of frequencies and mixing properties is found. PACS: 47.20.-k, 47.10.+g, 47.20.KyComment: 4 pages including 5 Postscript figure

    The p(d,p)d and p(d,p)pn reactions as a tool for the study of the short range internal structure of the deuteron

    Get PDF
    In recent time the deuteron structure at short distances is often treated from the point of view nonnucleonic degrees of freedom. In this paper the measurements of T-odd polarization observables using tensor polarized deuteron beam and polarized proton target or proton polarimeter are proposed to search the quark configurations inside the deuteron.Comment: 12 pages, 8 Postscript figures, submitted in Phys.Atom.Nuc

    Cochlear blood flow in response to dilating agents

    Full text link
    Reduced cochlear blood flow (CBF) has been implicated in various pathologies of the inner ear, including sudden deafness, noise-induced hearing loss and Meniere's disease. Thus the aim of some current therapeutic regimens to treat these conditions is to increase CBF and thereby improve oxygenation of the inner ear tissues. Most of the vasodilating agents in clinical use, however, do not have specific experimental evidence to support their effects on CBF. The hypotension which can follow systemic administration may limit their local effectiveness and general utility, just as it complicates the interpretation of the data in animal experiments. In the current study we investigated the effect of six agents, known for their systemic cardiovascular actions, on CBF: hydralazine, sodium nitroprusside, papaverine, nicotinic acid, verapamil and histamine. The effect of these drugs was studied after topical applications on the round window membrane (RWM) and systemic intravenous administrations. CBF was monitored with a laser Doppler flowmeter (LDF). Topical administration of sodium nitroprusside was the most effective in increasing CBF, followed, in order, by hydralazine and histamine. No change in CBF was observed for papaverine, verapamil or nicotinic acid. Systemic administrations of all the agents caused a marked decrease in blood pressure and variable effects on CBF. We discuss the CBF changes in relation to the different pharmacological mechanisms of action of each drug. The study demonstrates the effectiveness of topical application of vasodilating agents in increasing CBF.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30211/1/0000601.pd

    STIM1, an essential and conserved component of store-operated Ca2+ channel function

    Get PDF
    Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels

    Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Predictions of Current Models (I)

    Get PDF
    An extensive study of three-nucleon force effects in the entire phase space of the nucleon-deuteron breakup process, for energies from above the deuteron breakup threshold up to 200 MeV, has been performed. 3N Faddeev equations have been solved rigorously using the modern high precision nucleon-nucleon potentials AV18, CD Bonn, Nijm I, II and Nijm 93, and also adding 3N forces. We compare predictions for cross sections and various polarization observables when NN forces are used alone or when the two pion-exchange Tucson-Melbourne 3NF was combined with each of them. In addition AV18 was combined with the Urbana IX 3NF and CD Bonn with the TM' 3NF, which is a modified version of the TM 3NF, more consistent with chiral symmetry. Large but generally model dependent 3NF effects have been found in certain breakup configurations, especially at the higher energies, both for cross sections and spin observables. These results demonstrate the usefulness of the kinematically complete breakup reaction in testing the proper structure of 3N forces.Comment: 42 pages, 20 ps figures, 2 gif figure

    Measurement of Analyzing Power for Proton-Carbon Elastic Scattering in the Coulomb-Nuclear Interference Region with a 22-GeV/c Polarized Proton Beam

    Get PDF
    The analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region of momentum transfer, 9.0×103<t<4.1×1029.0\times10^{-3}<-t<4.1\times10^{-2} (GeV/c)2c)^{2}, was measured with a 21.7 GeV/cc polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip amplitude, r5r_5, was obtained from the analyzing power to be Rer5=0.088±0.058\text{Re} r_5=0.088\pm 0.058 and Imr5=0.161±0.226\text{Im} r_5=-0.161\pm 0.226.Comment: 4 pages, 4 figures and 1 table. Accepted by Physical Review Letter

    Measurement of the vector analyzing power in elastic electron-proton scattering as a probe of double photon exchange amplitudes

    Get PDF
    We report the first measurement of the vector analyzing power in inclusive transversely polarized elastic electron-proton scattering at Q^2 = 0.1 (GeV/c)^2 and large scattering angles. This quantity should vanish in the single virtual photon exchange, plane wave impulse approximation for this reaction, and can therefore provide information on double photon exchange amplitudes for electromagnetic interactions with hadronic systems. We find a non-zero value of A=-15.4+/-5.4 ppm. No calculations of this observable for nuclei other than spin 0 have been carried out in these kinematics, and the calculation using the spin orbit interaction from a charged point nucleus of spin 0 cannot describe these data.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Pulsed Feedback Defers Cellular Differentiation

    Get PDF
    Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable “polyphasic” positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a “timer” that operates over timescales much longer than a cell cycle
    corecore