266 research outputs found

    Hierarchical and Frequency-Aware Model Predictive Control for Bare-Metal Cloud Applications

    Get PDF
    Bare-metal cloud provides a dedicated set of physical machines (PMs) and enables both PMs and virtual machines (VMs) on the PMs to be scaled in/out dynamically. However, to increase efficiency of the resources and reduce violations of service level agreements (SLAs), resources need to be scaled quickly to adapt to workload changes, which results in high reconfiguration overhead, especially for the PMs. This paper proposes a hierarchical and frequency-aware auto-scaling based on Model Predictive Control, which enable us to achieve an optimal balance between resource efficiency and overhead. Moreover, when performing high-frequency resource control, the proposed technique improves the timing of reconfigurations for the PMs without increasing the number of them, while it increases the reallocations for the VMs to adjust the redundant capacity among the applications; this process improves the resource efficiency. Through trace-based numerical simulations, we demonstrate that when the control frequency is increased to 16 times per hour, the VM insufficiency causing SLA violations is reduced to a minimum of 0.1% per application without increasing the VM pool capacity

    A case of histoplasmosis Report 1. Cinical, mycological and pathological observations

    Get PDF
    In our country it has been believed that there is no histoplasmosis here in Japan. However, from the above clinical signs, radiological characteristics, laboratory tests, pathological and mycological examinations, and experimental findings, we believe this is the first case of histoplasmosis in Japan.</p

    Development of Carbon dioxide removal system from the flue gas of coal fired power plant

    Get PDF
    AbstractA quarter of the carbon dioxide emissions all over the world are exhausted from the thermal power plants. So we hav e been concentrated on the development of the low-cost CO2 capture technology. For the CO2 capture from the large amount of the flue gas, the chemical absorption method is suitable. We found an amine solvent had a good performance using thermodynamic simulation. The solvent exhibited that the CO2 recovery ratio and heat consumption for CO2 regeneration were 94% and 2.9 GJ/t-CO2 by the bench-scale test, respectively. Furthermore we will plan a 10 ton-CO2/day pilot plant using a real coal combustion gas

    c-Abl Inhibition Exerts Antiparkinsonian Effects

    Get PDF
    Parkinson’s disease (PD) is caused by a progressive degeneration of nigral dopaminergic cells leading to striatal dopamine deficiency. From the perspective of antiparkinsonian drug mechanisms, pharmacologic treatment of PD can be divided into symptomatic and disease-modifying (neuroprotective) therapies. An increase in the level and activity of the Abelson non-receptor tyrosine kinase (c-Abl) has been identified in both human and mouse brains under PD conditions. In the last decade, it has been observed that the inhibition of c-Abl activity holds promise for protection against the degeneration of nigral dopaminergic cells in PD and thereby exerts antiparkinsonian effects. Accordingly, c-Abl inhibitors have been applied clinically as a disease-modifying therapeutic strategy for PD treatment. Moreover, in a series of studies, including that presented here, experimental evidence suggests that in a mouse model of parkinsonism induced by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, c-Abl inhibition exerts an immediate effect improving motor impairments by normalizing altered activity in striatal postsynaptic signaling pathways mediated by Cdk5 (cyclin-dependent kinase 5) and DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein 32 kDa). Based on this, we suggest that c-Abl inhibitors represent an ideal antiparkinsonian agent that has both disease-modifying and symptomatic effects. Future research is required to carefully evaluate the therapeutic efficacy and clinical challenges associated with applying c-Abl inhibitors to the treatment of PD

    MECHANICAL BEHAVIOR OF ANTI-SYMMETRICALLY LAMINATED COMPOSITE BLADES

    Get PDF
    ABSTRACT Anti-symmetrically laminated composites have coupling effects between tensile stress and twisting deformation, and are very attractive as fan blade materials of aircraft engines. Blades fabricated by anti-symmetrically laminated composites can automatically adjust the stagger angle to better aerodynamic conditions with change of axial force or rotational speed owing to the coupling effects. Thus, the anti-symmetrically laminated composite blades are expected to improve aerodynamic efficiency and the stability of aircraft engines. In this paper, the mechanical behavior of antisymmetrically laminated composite blades is evaluated by spin tests and finite element analyses

    BALB/c-Fcgr2b−/−Pdcd1−/− mouse expressing anti-urothelial antibody is a novel model of autoimmune cystitis

    Get PDF
    We report the impact of anti-urothelial autoantibody (AUAb) on urinary bladder phenotype in BALB/c mice deficient of the FcγRIIb and PD-1. AUAb was present in serum samples from approximately half of the double-knockout (DKO) mice, as detected by immunofluorescence and immunoblots for urothelial proteins including uroplakin IIIa. The AUAb-positive DKO mice showed degeneration of urothelial plaque and umbrella cells, along with infiltration of inflammatory cells in the suburothelial layer. TNFα and IL-1β were upregulated in the bladder and the urine of AUAb-positive DKO mice. Voiding behavior of mice was analyzed by the Voided Stain on Paper method. 10-week-old and older AUAb-positive DKO mice voided significantly less urine per void than did wild type (WT) mice. Furthermore, administration of the AUAb-containing serum to WT mice significantly reduced their urine volume per void. In summary, this report presents a novel comprehensive mouse model of autoimmune cystitis
    corecore