
Hierarchical and Frequency-Aware Model
Predictive Control for Bare-Metal Cloud
Applications

著者 OGAWA Yukio, HASEGAWA Go, MURATA Masayuki
journal or
publication title

2018 IEEE/ACM 11th International Conference on
Utility and Cloud Computing

volume 18373906
year 2018-12
URL http://hdl.handle.net/10258/00010037

doi: info:doi/10.1109/UCC.2018.00010

Hierarchical and Frequency-Aware Model Predictive
Control for Bare-Metal Cloud Applications

Yukio Ogawa
Center for Multimedia Aided Education

Muroran Institute of Technology
Muroran, Hokkaido 050-8585 Japan

Email: y-ogawa@mmm.muroran-it.ac.jp

Go Hasegawa
Cybermedia Center
Osaka University

Toyonaka, Osaka 560-0043 Japan

Email: hasegawa@cmc.osaka-u.ac.jp

Masayuki Murata
Graduate school of Information Science

and Technology, Osaka University
Suita, Osaka 565-0871, Japan

Email: murata@ist.osaka-u.ac.jp

Abstract—Bare-metal cloud provides a dedicated set of physical
machines (PMs) and enables both PMs and virtual machines
(VMs) on the PMs to be scaled in/out dynamically. However,
to increase efficiency of the resources and reduce violations of
service level agreements (SLAs), resources need to be scaled
quickly to adapt to workload changes, which results in high
reconfiguration overhead, especially for the PMs. This paper
proposes a hierarchical and frequency-aware auto-scaling based
on Model Predictive Control, which enable us to achieve an opti-
mal balance between resource efficiency and overhead. Moreover,
when performing high-frequency resource control, the proposed
technique improves the timing of reconfigurations for the PMs
without increasing the number of them, while it increases the
reallocations for the VMs to adjust the redundant capacity among
the applications; this process improves the resource efficiency.
Through trace-based numerical simulations, we demonstrate that
when the control frequency is increased to 16 times per hour, the
VM insufficiency causing SLA violations is reduced to a minimum
of 0.1% per application without increasing the VM pool capacity.

Index Terms—Bare-metal cloud, frequency-aware, auto-
scaling, Model Predictive Control, resource reconfiguration

I. INTRODUCTION

Bare-metal cloud offers infrastructure as a service (IaaS) in

which a customer uses a dedicated set of physical servers (also

called physical machines (PMs)) on a pay-per-use basis [1].

Existing on-premises types of deployment for business-critical

applications, such as web-based applications like e-mail and

collaboration [2], often use dedicated PM clusters to handle

peak workload to avoid violating service level agreements

(SLAs) and to satisfy manageability of software licenses and

requirements for audit of compliance and security, which can

cause the applications to become over-provisioned and under-

utilized most of the time [3]. We suppose that an application

provider rents such a PM cluster from a bare-metal cloud

provider to improve resource efficiency, creates a VM pool on

the cluster, and hosts business-critical applications on the pool

without changing existing management policies. In this paper,

we try to develop an optimal resource allocation mechanism

for such applications in bear-metal cloud environments.

Elasticity is a key concept in cloud computing, and resource

allocation mechanisms that embody it have been investigated

for many years [4], [5]. When SLA violations are caused by

time delays between detecting a workload change and com-

pleting corresponding reconfigurations of resources, proactive

mechanisms are essential in that future workloads need to be

known ahead of time. Previous studies have predicted future

workloads with time series analysis using models like the

auto-regressive integrated moving average (ARIMA) model

and other techniques [4], [5], in which prediction accuracy

is significantly affected by workload characteristics, training

data sets, etc. For example, in the case of a sudden spike

in workload, known as a flash crowd [6], it may be difficult

to obtain an appropriate training data set, and any prediction

techniques can cause inevitable errors. Hence, as an approach

to reduce the impact of prediction errors, we increase the con-

trol frequency (i.e., the frequency of reconfiguration decisions)

so that resource reconfiguration can adapt more quickly to

workload changes.

In this paper, we describe a prediction-based proactive

scaling of both PMs and virtual machines (VMs) as the

computing resources in bare-metal cloud environments. In

commercial clouds, on-demand VMs are ready to use within

a few minutes [7], and users are charged on a per-second

basis [8]. On the other hand, users of commercial bare-metal

instances, i.e., PMs, are currently billed on a per-hour basis [1].

However, the authors in [9], [10] have investigated that the

deployment of PMs can be completed within several minutes.

Hence, it is technically possible that the billing and provi-

sioning period required for PMs can also be reduced to a few

minutes in future commercial clouds. These short provisioning

periods of PMs and VMs enable a bare-metal cloud to be

reconfigured at high frequency, which improves the resource

efficiency, i.e., reduces the redundant resources leading to

extra costs and the insufficient resources (caused by prediction

errors) resulting in SLA violations. However, when this high-

frequency reconfiguration is kept even if workload change

is negligible, significant reconfiguration overhead occurs. We

therefore adopted model predictive control (MPC) [11].

MPC is an adaptive control framework in which reconfig-

uration decisions are made at each control step by solving a

problem to optimize the balance between resource efficiency

and reconfiguration overhead using predictions of future work-

loads. We have explored an MPC-based technique for scaling

bare-metal cloud applications and identified the following

challenges from architectural and technical perspectives:

2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing (UCC)

• We suppose that applications are hosted on the VMs,

which are distributed across underlying PMs to guarantee

application availability. In addition, a lead time is the

time period between the initiation and the completion of

a reconfiguration process, and PMs generally require a

longer lead time than VMs. Thus, before we initiate the

reconfiguration process of the VMs to allocate them to

the applications, we need to initiate the process of the

PMs with an estimation of the capacity required for the

applications at the time these processes complete.

• Increasing the control frequency to improve the resource

efficiency is required. However, reconfiguration overhead

also increases significantly when a high-frequency recon-

figuration continues regardless of workload change speed.

This excessive reconfiguration should be suppressed, es-

pecially for the PMs, depending on the control frequency

and the speed of workload changes.

To overcome these challenges, we propose a hierarchical

control scheme and a frequency-aware control technique, and

clarify their effect. Our main contributions are as follows.

• We apply a two-level hierarchical MPC to PMs and VMs

for which different lead times required by them are given.

This scheme ensures that the PM cluster is scaled to have

the estimated capacity required for the applications, and

that the cluster dynamically impose a capacity constraint

on the VMs allocated to the applications.

• The MPC utilizes a weight factor to adjust the balance

between resource efficiency and reconfiguration overhead.

We assign different weight factors to the PMs and VMs

depending on the control frequency. This prevents the PMs

from being reconfigured excessively while enabling the

VMs to be reconfigured repeatedly, when high-frequency

control is needed to react to rapid changes in workload.

• When the resources are controlled at high frequency, the

proposed technique adjusts the reconfiguration timing of

PMs without increasing the number of reconfiguring ac-

tions, as well as increasing the reallocating actions of VMs

to redistribute redundant capacity among the applications,

which leads to the reduction of SLA violations without

increasing the VM pool capacity.

In prediction-based proactive scaling, a certain amount of

redundant resources should be prepared to avoid the SLA vio-

lations caused by prediction errors, but excessive redundancy

results in extra cost. Through numerical evaluations using real

world traces, we demonstrate that, when the control frequency

is increased from 1 to 16 times per hour, the insufficient VMs

causing SLA violations is reduced to a minimum of 0.1%

per application while maintaining the PM cluster capacity.

Moreover, the number of reconfiguration for PMs decreases

to one-third at that time.

The rest of this paper is organized as follows. Section II

discusses related work on MPC-based auto-scaling in cloud

environments. Section III presents our framework for applying

MPC-based auto-scaling to a bare-metal cloud environment.

Section IV describes the proposed model of hierarchical and

frequency-aware auto-scaling. Section V explains the algo-

rithm to find optimal values of the model. Section VI eval-

uates the effectiveness of our auto-scaling technique. Finally,

Section VII concludes the paper.

II. RELATED WORK

MPC-based auto-scaling is a promising technique for proac-

tive resource allocation in cloud environments. In the case of

a single data center, the authors in [12], [13] adjusted the total

cost required for allocating and reconfiguring servers and SLA

violations. The authors in [14], [15] also minimized the sum

of the energy and on-off costs of the servers while maintaining

their capacity to meet an SLA. Moreover, the authors in [16],

[17] minimized the total cost required for hosting servers and

their power consumption and reconfiguration while satisfying

a latency constraint over multiple data centers. Jiao et al. [18]

also minimized the total cost of allocating and reconfiguring

both servers and networks in two-tier data centers. De Matteis

and Mencagli [19], [20] developed a strategy that controls

a stream-based application in parallel distributed computing

environments, and minimizes the total cost of resource allo-

cation, reconfiguration, and penalty for service quality.

Since we target the bare-metal cloud that hosts the applica-

tions composed of VMs across PMs, we need a hierarchical

resource allocation scheme. Gaggero and Caviglione [21]

proposed an MPC-based predictive control to minimize the

energy consumption by PMs and the migrations of VMs hosted

on the PMs in a data center. However, they neglected the

lead times for both machines because they supposed long,

e.g., 1-hour, control interval. Kusic et al. [22] also proposed

an MPC-based online provisioning control to maximize the

profit, i.e., the difference between the response time gain and

the total cost of power consumption and switching actions

for both PMs and their hosting VMs in a cloud environment.

Although they take into account different lead times for the

PMs and VMs, they model the lead times as constants and

do not discuss the influence of various lengths of them. By

contrast, we evaluated the influence because a longer lead

time causes larger prediction errors of future workloads, which

affect the allocated resources capacity and SLA violations.

Furthermore, it is essential to increase control frequency

to improve resources efficiency, for which the reconfiguration

overhead is increased as well. Handling this relationship is a

key focus in this paper, which was not within the scope of the

previous studies.

III. SCALING FRAMEWORK

This section presents an overview of a bare-metal cloud and

our control framework. For convenience, Table I summarizes

the main variables and parameters used in this paper.

1) System Architecture: Our target cloud environment con-

sists of a dedicated PM cluster provided by a bare-metal cloud

provider and a controller operated by an application provider,

as depicted in Fig. 1. An application comprises a computing

cluster, i.e., a set of VMs assigned from the VM pool on

the PM cluster, and other components such as firewalls, load

TABLE I
LIST OF MAIN SYMBOLS AND NOTATION

Symbols for describing control inputs

u(t) Number of PMs invoked at time slot t to be additionally
turned on/off

vi(t) Number of VMs invoked at time slot t to be additionally
allocated/deallocated for application i

f Control frequency (times per unit time)

h Length of control and prediction horizons (in time slots)

Lu Lead time for a PM (in time slots)

Lv Lead time for a VM (in time slots) (1 ≤ Lv ≤ Lu)

Symbols for describing states of resources

x(t) Number of PMs at time slot t

xmin(t) Minimum of x(t)

xmax(t) Maximum of x(t)

yi(t) Number of VMs being allocated for application i at time
slot t

ymin
i (t) Minimum of yi(t)

ymax
i (t) Maximum of yi(t)

Cu Cost of renting a PM per unit time

Wu Cost of a reconfiguration action per PM

Wv Cost of a reconfiguration action per VM

N Number of VMs per PM

Symbols for describing performance of application i (i = 1, · · · ,M)

λi(t) Request arrival rate at time slot t (= maximum arrival rate
monitored during time slot t)

λ̂i(t) Predicted value of λi(t)

μi Processing capacity of a VM

r0 Network latency

Q Upper limit of response time

R Permissible ratio of response time of more than Q

Others

x(t+ l|t) Value of variable x at time slot t+l calculated with available
information at time slot t

balancers, and database servers, in which the PMs and VMs

are scaled and other components are used statically. The con-

troller has four functions of monitoring request arrivals to the

applications, predicting future request arrivals, provisioning

the PMs, and supplying VMs to the applications. It monitors

request arrival rates to the applications at a fixed time interval.

It also makes scaling decisions of the computing resources

periodically at a fixed time interval called a time slot, and

the current time slot is denoted by t. The control frequency f
is the frequency of making scaling decisions, which is either

equal to or lower than the monitoring frequency. The request

arrival rate at t, denoted by λ(t), is given by the maximum

number of request arrival rates monitored during t to avoid

SLA violations.

2) Lead Time: A lead time is defined as the time period

between when a command is invoked to reconfigure a PM or

VM and when the reconfiguration is completed; this is denoted

by Lu and Lv for the PMs and VMs, respectively, and we

assume 1 ≤ Lv ≤ Lu. This lead time is composed of the

time needed for environment setup and that for switching a

resource. The environment setup comprises the configurations

i

Fig. 1. System architecture

of, e.g., network and storage interfaces, server clusters, log-

ging required for compliance and security, data copying, and

procedures for authentication and payment, which correspond

to the reconfiguration overhead. Switching a resource indicates

the additional start-up/shutdown/reboot/migration of a PM or

VM. We assume that most of the lead time is due to the

environment setup, which can be very long, e.g., 1 hour,

in the case of the PMs. Although the lead time is different

among various environmental configurations and switching

actions, we assume that the lead time does not depend on

these factors for simplicity. In addition, we set the length of a

time slot longer than the time for switching resources so that

the resource switching at each time slot is completed within

the time slot.
3) Control Steps: We adapt the MPC to scale the PMs and

VMs, as depicted in Fig. 2. Control commands are invoked

at each time slot along the control horizon of length h, i.e.,

the period between time slot t and time slot t + h − 1. The

commands are also completed at each time slot along the

prediction horizon of the same length, i.e., the period between

time slot t+Lu and time slot t+Lu+h− 1 for the PMs and

that between time slot t+Lv and time slot t+Lv+h−1 for the

VMs. More precisely, at the current time slot t, the controller

operates PMs and VMs through the following steps. Note that

we denote a time slot on the control horizon as t+ k, a time

slot on the prediction horizon for the PMs as t + l, where

l = Lu + k, and a time slot on the prediction horizon for the

VMs as t+m, where m = Lv + k.

Step 1: The controller determines the control action at the

current time slot t for scaling the PMs.

Step 1.1: It predicts λ̂i(t+ l|t), the rate of request arrivals

to application i (i = 1, · · · ,M) at time slot t + l, along

the prediction horizon for the PMs using available request

arrival information at time slot t.
Step 1.2: It calculates x(t+ l|t), the number of PMs needed

to be active at time slot t+ l, along the prediction horizon

for PMs. x(t+ l|t) is computed to ensure that an SLA, e.g.,

a constraint on response time performance, will be satisfied

when application i receives the request arrival rate of λ̂i(t+
l|t) at time slot t+ l.
Step 1.3: It determines u(t+k|t), the number of additional

PMs invoked at time slot t+ k so that x(t+ l|t) PMs will

be active after Lu time slots, along the control horizon.

t

λi(t)

h

h

h

P
(r

>
Q

)

r

R

Lv

Lu

λ̂i(t+Lu+k|t)

t+Lu+k

Fig. 2. Overview of model predictive control

Step 1.4: It issues only u(t|t), the command of current time

slot t for the PMs, which will have been completed at time

slot t+ Lu.

Step 2: The controller determines the control action at current

time slot t for scaling the VMs of application i in a similar

manner. This step is repeated for all the applications.

Step 2.1: It predicts λ̂i(t+m|t) for the all applications.

Step 2.2: It calculates yi(t + m|t), the number of VMs

being allocated to application i at t+m, using λ̂i(t+m|t).
It enables the VMs to make full use of the capacity of the

PM cluster to reduce the risk of under-provisioning caused

by the prediction errors.

Step 2.3: It computes vi(t+ k|t), the number of additional

VMs invoked at time slot t+ k,

Step 2.4: It sends vi(t|t), the command at time slot t.

Step 3: It proceeds to the next time slot by replacing t with

t+ 1 and returns to Step 1.

IV. MODEL FORMULATION

This section presents a mathematical model for embodying

the control steps explained in the previous section.

A. Problem Formulation
We explain the optimization problems that the controller

solves to determine the control inputs.
1) Scaling of PMs: As mentioned in Step 1 in Section III,

the controller solves the following problem at current time

slot t to balance the redundant PMs and the reconfiguration

overhead.

Objective: minimize

Ju =

(
Cu

f

)2 Lu+h−1∑
l=Lu

(
x(t+ l|t)− xmin(t+ l|t))2

+W 2
u

h−1∑
k=0

u(t+ k|t)2 (1)

Subject to:⎡
⎢⎣

x(t+ Lu|t)
...

x(t+ Lu + h− 1|t)

⎤
⎥⎦ =

⎡
⎢⎣
x(t+ Lu − 1|t− 1)

...

x(t+ Lu − 1|t− 1)

⎤
⎥⎦

+

⎡
⎢⎣
1 0
...

. . .

1 · · · 1

⎤
⎥⎦
⎡
⎢⎣

u(t|t)
...

u(t+ h− 1|t)

⎤
⎥⎦ , (2)

x(t+ l|t) ≥ xmin(t+ l|t) (3)

(l = Lu + k; Lu = 1, 2, · · · ; k = 0, · · · , h− 1),

where xmin(t+ l|t) is the minimum number of PMs required

to keep an SLA at time slot t + l, which is explained in the

next subsection.
The cost function Ju is a combination of the cost for

holding redundant PMs along the prediction horizon and the

cost for reconfiguring PMs along the control horizon. The

reconfiguration cost is calculated on the basis of the total

number of PMs being additionally activated/deactivated. The

weight factors Cu/f and Wu represent the cost of renting a

PM per time slot and the cost of a reconfiguration action per

PM, respectively. As control frequency f becomes large, Cu/f
reduces while Wu is not changed. This prevents the PMs from

being overly reconfigured for small changes in workload when

they are controlled at higher frequency.
Constraint (2) states that there are Lu time slots between

the time slot at which a control command is sent to the PMs

and that at which the PMs become ready to use. Constraint (3)

ensures that the PMs should be provided with more than the

minimal amount.
2) Scaling of VMs: As mentioned in Step 2 in Section III,

the controller solves the following problem at current time slot

t to balance the risk of VM insufficiency for the applications

and the reconfiguration overhead, in a similar way to the

scaling of the PMs.

Objective: minimize

∀i (i = 1, · · · ,M),

Jvi =

(
Cu

fN

)2 Lv+h−1∑
m=Lv

(ymax
i (t+m|t)− yi(t+m|t))2

+W 2
v

h−1∑
k=0

vi(t+ k|t)2 (4)

Subject to:⎡
⎢⎣

yi(t+ Lv|t)
...

yi(t+ Lv + h− 1|t)

⎤
⎥⎦ =

⎡
⎢⎣
yi(t+ Lv − 1|t− 1)

...

yi(t+ Lv − 1|t− 1)

⎤
⎥⎦

+

⎡
⎢⎣
1 0
...

. . .

1 · · · 1

⎤
⎥⎦
⎡
⎢⎣

vi(t|t)
...

vi(t+ h− 1|t)

⎤
⎥⎦ , (5)

yi(t+m|t) ≤ ymax
i (t+m|t) (6)

(m = Lv + k; Lv = 1, 2, · · · ; k = 0, · · · , h− 1),

where ymax
i (t + m|t) is the number of VMs available for

application i at time slot t + m, which is explained in the

next subsection, and Constraint (6) states that the number of

VMs is equal to or less than ymax
i (t+m|t).

The cost function Jvi includes the cost proportional to

the difference between the available and allocated VMs. The

controller attempts to allocate VMs utilizing as much of the

PM cluster’s capacity as possible. Moreover, Cu/fN and Wv

are the weight factors representing the cost of a VM per

time slot and the cost of a reconfiguration action per VM,

respectively, where N is the number of VMs per PM.

B. Scaling Range
The lower bounds for the numbers of PMs and VMs at

time slots t, denoted by xmin(t) and ymin
i (t), respectively, are

determined to avoid SLA violations. The upper bound for the

number of VMs, denoted by ymax
i (t), is determined to make

full use of the PM’s capacity. In addition, the upper bound for

the number of PMs, denoted by xmax(t), is conveniently set

to solve the optimization problem in the next section.
1) Minimum Resources: The controller determines the min-

imum resources at each time slot to have sufficient capacity to

keep the SLA whose metric is defined in the following way.

The controller computes F (r), the cumulative distribution

function of response time r, for each application and imposes

a constraint on P (r > Q), the ratio of the request arrivals

whose response time r is more than upper limit Q:

P (r > Q) = 1− F (Q) ≤ R, (7)

where R is a threshold. A well-known way to obtain the

cumulative distribution function F (r) is to apply the M/M/m

queuing model [23]:

F (r) = 1− πe−(μy−λ̂)(r−r0) (r ≥ r0),

π =
yρy

y!(y − ρ)

[
yρy

y!(y − ρ) +
y−1∑
c=0

ρc

c!

]−1

, ρ =
λ̂

μ
, (8)

where r0 is a constant network latency, μ is the processing

capacity of a VM, and we omit ‘i(t+l|t)’ for brevity. The SLA

constraint (7) depends on the number of VMs, yi(t+ l|t), and

the prediction of request arrival rate, λ̂i(t+ l|t), and therefore

cannot be satisfied for actual request arrival rates. Note that

we adopt the waiting time distribution, not the sojourn time

distribution in (8) because the applications are supposed to

respond quickly to a request without waiting for the request

to be completed.
The minimum number of VMs satisfying the SLA con-

straint (7), ymin
i (t+ l|t), is then computed by:

ymin
i (t+ l|t) =

arg min
yi(t+l|t)∈N

{R− P (r > Q)|P (r > Q) ≤ R} . (9)

The minimum number of PMs, xmin(t+ l|t), in Objective (1)

is therefore given by:

xmin(t+ l|t) =
⌈
1

N

M∑
i=1

ymin
i (t+ l|t)

⌉
. (10)

Fig. 3. Capacity constraint PMs impose on VMs

2) Maximum Resources: Any available space of redundant

VMs in the PM cluster is divided among the applications

proportionally by their VM amounts. The number of VMs

available for application i, ymax
i (t+m|t), in Objective (4) is

thus given by:

ymax
i (t+m|t) = round

(
Nx∗(t+m)

ymin
i (t+m|t)∑M

i=1 y
min
i (t+m|t)

)
,

x∗(t+m) =

{
x(t+m|t+m− Lu) (Lv ≤ m ≤ Lu − 1),

x(t+m|t) (Lu ≤ m ≤ h− 1),

(11)

where round means rounding a value to an integer. x∗(t+m)
is the capacity of the PM cluster, which has been determined

at past time slot t+m−Lu if m is less than Lu, as depicted in

Fig. 3. ymax
i (t+m|t) determined by using the past time slot

might be less than ymin
i (t + m|t) calculated at current time

slot t because of the prediction error of request arrival rate. If

so, ymax
i (t+m|t) is replaced by ymin

i (t+m|t).
In addition, we define xmax(t+l|t), the maximum allowable

number of PMs at time slot t + l, to form the envelop of

minimum number of PMs over the prediction horizon, which

is given by:

xmax(t+ l|t) = max

{
x(t+ Lu − 1|t− 1),

max
Lu≤l≤Lu+h−1

xmin(t+ l|t)
}
. (12)

C. Prediction of Request Arrivals

The controller calculates λ̂(t + l|t), l-time-slot-ahead pre-

diction of request arrival rate at time slot t, with the ARIMA

model [24]. Note that the subscript ‘i’ is omitted for brevity

in this subsection. The series of a request arrival rate, λ(t), is

transformed into a stationary time series, Λ(t), by applying the

dth-order non-periodic differencing and the Dth-order periodic

differencing:

Λ(t) = (1−B)d(1−Bs)Dλ(t), (13)

where B is the backward shift operator (Bλ(t) = λ(t − 1)),
and s is the number of request arrival rates that make up a

seasonal cycle. Λ(t) is obtained by:

Λ(t) =

p∑
α=1

φαB
αΛ(t) + (1 +

q∑
β=1

θβB
β)ε(t), (14)

where φα, θβ are the parameters and ε(t) is white noise, i.e.,

ε(t) ∼ N(0, σ2). l-time-slot-ahead value Λ(t + l) is then

expressed as Λ(t + l) =
∑∞

j=0 ψ(j)ε(t + l − j), where ψ(j)
is the parameter calculated from the past arrival rates and

ψ(0) = 1 [24].

V. RESOURCE ALLOCATION ALGORITHM

The optimization problems described in Section IV-A are

integer programming problems. Since x(t+l|t) and yi(t+m|t)
are non-negative integers, the optimal values of these variables

can be found using dynamic programming, and subsequently,

the optimal values of u(t+k|t) and vi(t+k|t) are computed,

respectively. We explain only the algorithm for determining the

optimal value of x(t+ l|t) in this section because the optimal

value of yi(t+ l|t) can be determined as the same way.

First, we define the following equations to determine an

optimal solution for Objective (1):

g(x(t+ l|t)) = (Cu/f)2(x(t+ l|t)− xmin(t+ l|t))2
+W 2

uu(t+ k|t)2 (l = Lu + k), (15)

Gκ(ξκ) := min

{
Lu+κ∑
l=Lu

g(x(t+ l|t))
∣∣∣∣∣
Lu+κ∑
l=Lu

x(t+ l|t) = ξκ

}

(κ = 0, · · · , h− 1; ξκ = ξmin
κ , · · · , ξmax

κ), (16)

where ξmin
κ and ξmax

κ are the minimum and maximum numbers

of PMs over the prediction horizon, respectively, which are

given by:

ξmin
κ =

Lu+κ∑
l=Lu

xmin(t+ l|t), (17)

ξmax
κ =

Lu+κ∑
l=Lu

xmax(t+ l|t). (18)

The optimal values of Objective (1) are then obtained by:

min Ju = min
ξmin
h−1≤ξh−1≤ξmax

h−1

Gh−1(ξh−1), (19)

which is calculated by the following recursive procedure:

G0(ξ0) = g(x(t+ Lu|t)), x(t+ Lu|t) = ξ0

(ξ0 = ξmin
0 , · · · , ξmax

0), (20)

Gκ(ξκ) =

min
xmin(t+ν|t)≤x(t+ν|t)≤xmax(t+ν|t)

{
Gκ−1(ξκ − x(t+ ν|t))

+ g(x(t+ ν|t))
}

(ν = Lu + κ; ξκ = ξmin
κ , · · · , ξmax

κ). (21)

VI. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation using real-

world data traces. We suppose that the PMs are reconfigured

at most once per hour while the VMs can be automatically

reallocated and take several minutes to be usable in existing

cloud environments. Starting from this assumption, our eval-

uation focuses on clarifying the effectiveness of the proposed

technique when the control frequency is increased.

A. Experimental Setup

The parameter values we selected for the evaluations are

listed in Table II, and additional explanations are described

below:

1) Control inputs: We increased the control frequency f
from 1 to 16 times per hour. This means that the length of a

time slot ranges from 1 hour to 225 secs, in which the former

is the length of the current billing interval [1] and the latter

corresponds to the sum of the minimum time for provisioning

a PM [9], [10] and that for a VM [7]. The length of control

and prediction horizons is fixed to f time slots (i.e., 1 hour)

because we assume that PMs are allowed to be reconfigured

once an hour in existing clouds. The lead time Lu takes the

values of f time slots and 1 time slot, while the lead time Lv

takes only the value of 1 time slot because we assume that the

reconfiguration of VMs has been already fully automated.

2) Resource states: The weight factors in Objectives (1)

and (4) are defined in accordance with the ratio between

resource cost and reconfiguration expense. A single PM cost

Cu is in the range of $0.517–$4.747 per hour [1]; these values

are exchanged on the yen basis at a rate of $1 = �110.

Moreover, we assume that the cost for reconfiguring a resource

corresponds to the cost for employing technical staff members

who manage and operate the resource. The personnel expense

per staff member is in the range of �4700–�8200 per hour,

and a single staff member is supposed to manage up to 100

PMs or 1000 VMs [25] per hour. Thus, Wu is in the range of

�47–�82 per reconfiguration per PM, and Wv is in the range

of �4.7–�8.2 per reconfiguration per VM. Objective (1) is

hence given Wu/Cu ranging from 0.1 to 1.4. Although Wv/Cu

also ranges from 0.01 to 0.14, we give only the lower bound

(Wv/Cu = 0.01) to Objective (4) because of the assumption

about automated reconfiguration of the VMs.

3) Application performance: The monitoring interval of

request arrival rates is set to the minimum length of a time

slot (225 secs). To predict request arrival rate λ̂(t), we apply

Box-Cox transformation [24] and set d = 1, D = 1, and

s = 168f (i.e., one-week seasonality) to (13), then identify

the parameters in the ARIMA model (14) using the last two

weeks of data [26]. In the SLA constraint (7), Q is set to

0.15 secs [27] and R is set to 0.05. Furthermore, μi is set to
1/N of the median of request arrival rates measured over the

evaluation period (denoted by λmedian
i) so that each application

is scaled out to N VMs (i.e., a single PM) when it receives

the median of request arrival rates.

TABLE II
PARAMETER VALUES USED FOR EVALUATION

f 1–16 times per hour

h f time slots (= 1 hour)

Lu 1, f time slot(s) (= 1/f, 1 hour(s))

Lv 1 time slot (= 1/f hours)

Wu/Cu 0.1–1.4

Wv/Cu 0.01

N 4 VMs per PMs

μi λmedian
i /N (λmedian

i : median of request arrival rates
measured over the evaluation period)

r0 0.02 secs (i.e., a supposed latency of a wide-area network)

Q 0.15 secs [27]

R 0.05

B. Trace data and prediction errors

We suppose that three applications are hosted on the bare-

metal cloud. We use HTTP traces from the following three

real-world web applications. Each trace has a seven-week-long

period and the starting time of each is set to time slot 1.

• World Cup: The 1998 FIFA World Cup website [28] (May

20, 1998 – Jul. 8, 1998, λmedian
i = 281 requests/sec).

• Campus: A campus website of a university with about

30,000 students and staff members (Apr. 16, 2014 – Jun.

4, 2014, λmedian
i = 2.4 requests/sec).

• Video: A video website to which access is traced on a

gateway node of a Japan-wide backbone network (Sep.

30, 2015 – Nov 18, 2015, λmedian
i = 0.97 requests/sec).

We use World Cup as an example of a website for individuals

and Campus and Video as examples of websites for an

organization or enterprise. Fig. 4 presents examples of the

traces and corresponding resource allocations1 over a 1-day

period. Fig. 4a shows the total capacity requirement (calculated

as
∑

i y
min
i (t) at f = 16 for actual request arrival rates) and

the minimum and assigned capacity of the VM pool on the

PM cluster (calculated as Nxmin(t) and Nx(t), respectively).

Figs. 4b, 4c and 4d also illustrate the required and allocated

capacities for the applications, respectively.

Furthermore, Fig. 5 indicates that the prediction errors for

f -time-slot-ahead (i.e., 1-hour-ahead) prediction (labeled by

Lu = f) and 1-time-slot-ahead prediction (labeled by Lu = 1)

in terms of the mean absolute error |λi(t)− λ̂i(t)| normalized

by λmedian
i . The prediction errors are mainly caused by a large

spike lasting a few hours in the case of World Cup (see arrows

in Fig. 4b) and by a fluctuation during several tens of minutes

in the cases of Campus and Video (see arrows in Figs. 4c and

4d). The errors decrease as the control frequency f increases,

i.e., the length of a time slot decreases, especially in the case

of Lu = 1, because a shorter interval reduces the workload

changes within the interval, resulting in smaller prediction

errors at the interval. This is especially true for the large spike

lasting for hours resulting from a flash cloud event.

1The average computation time per time slot was less than 12.4 secs in our
evaluation environment (CPU: 10 cores, 3.3 GHz, memory: 128 GB).

(a) Capacity of VM pool on PM cluster

(b) Number of VMs in World Cup

(c) Number of VMs in Campus

(d) Number of VMs in Video

Fig. 4. Examples of capacity requirements and allocated resources over a
1-day period (f = 2,Wu/Cu = 0.7, Lu = 1, The arrows in Figs. 4b, 4c, and
4d indicate main time slots where SLA violations occur.)

Fig. 5. Prediction errors

C. Effect of control frequency

Higher-frequency control can react faster to large and rapid

changes. However, this leads to more reconfiguration actions.

We thus evaluated the effect of our frequency-aware MPC on

this context with the following three control options:

• Case 1: the lower weight for reconfiguration (Wu/Cu = 0.1)

• Case 2: the medium weight for reconfiguration (Wu/Cu =
0.7)

• Case 3: the upper weight for reconfiguration (Wu/Cu = 1.4)

(a) PMs (b) VMs (smallest – World Cup) (c) VMs (largest – Campus)

Fig. 6. Effect of control frequency on resource reconfiguration

(a) VM pool capacity (b) Insufficient VMs (smallest – World Cup) (c) Insufficient VMs (largest – Campus)

Fig. 7. Effect of control frequency on resource efficiency

Each of the cases was analyzed with (a) the upper bound of

PM’s lead time (Lu = f) and (b) the lower bound of PM’s

lead time (Lu = 1).

1) Reconfiguration: The average total number of recon-

figured PMs per hour, i.e., f |u(t)|, is shown in Fig. 6a,

that of reconfigured VMs per hour (i.e., f |vi(t)|) in the

least reconfigured application, i.e., World Cup is shown in

Fig. 6b, and that of reconfigured VMs per hour in the most

reconfigured application, i.e., Campus is shown in Fig. 6c. The

total number of reconfigured PMs per hour increased from 1.4

at f = 1 to 4.4 at f = 16 in Case 1, while this increase

was suppressed and the number decreased from 0.8 to 0.03

in Case 3. These results are slightly affected by the value

of Lu. On the other hand, the total number of reconfigured

VMs increases with f in all the applications because the VMs

are easily reconfigured due to the minimum Wv/Cu. The total

number becomes relatively large at f = 8 and f = 16 in Case

3 because the VM pool capacity becomes large at those times,

as explained later.

In Case 2 and Case 3, as f increases, the total number of

reconfigurations decreases for the PMs but increases for the

VMs. This implies that the capacity of the VM pool is hold

but the relocation of the VMs among the applications becomes

more active with f .

2) Resource efficiency: We evaluated the number of redun-

dant/insufficient VMs as metrics of resource efficiency. Fig. 7a

shows average capacity of the VM pool on the PM cluster

(Nx(t)). It also indicates the average capacity requirement

to clarify the redundant resources. Furthermore, Figs. 7b and

7c indicate the average number of insufficient VMs computed

as the average shortage of the allocated VMs yi(t) from the

capacity requirement for each application, where World Cup

indicates the smallest insufficiency while Campus shows the

largest. In Fig. 7a, all cases are additionally analyzed with no

prediction errors, denoted by ideal, in which the results do not

depend on the value of Lu.

In Fig. 7a, when f increased from 1 to 16 in Case 1, the

VM pool capacity was reduced from 37.5 to 28.1, which

was very close to the capacity requirement 26.6. This is

because high-frequency control with the light weight factor

performs many reconfigurations, resulting in the reduction

of resource redundancy. On the other hand, the VM pool

capacity increased from 40.9 to 66.0 in Case 3 because fewer

reconfigurations prevent the pool from shrinking as shown in

Fig. 4a. These results are almost the same for all Lu and only

slightly different from ideal. This indicates that the capacity

of the PM cluster is little affected by the prediction errors.

Next, we explain the effect on SLA violations caused by

resource insufficiency. World Cup had the fewest violations

as shown in Fig. 7b because it had the smallest prediction

errors among the three applications. When f increased from

1 to 16 in Case 1 with Lu = 1, the number of insufficient

VMs significantly improved from 0.34 to 0.07 because higher-

frequency control can respond more quickly to a large spike

like that in Fig. 4b, which makes the prediction errors small,

leading to the reduction of insufficient VMs as well. In

(a) PMs (b) VMs (smallest – World Cup) (c) VMs (largest – Campus)

Fig. 8. Effect of reconfiguration weight factor on resource reconfiguration

(a) VM pool capacity (b) Insufficient VMs (smallest – World Cup) (c) Insufficient VMs (largest – Campus)

Fig. 9. Effect of reconfiguration weight factor on resource efficiency

contrast, the number of insufficient VMs became slightly

worse from 0.34 to 0.41 in Case 1 with Lu = f because

the prediction errors do not significantly decrease with f and

fewer redundant VMs are supplied at that time. On the other

hand, in Case 3, the number of insufficient VMs improved

from 0.22 to 0.001 for both Lu = f and Lu = 1, owing to

the significant increase of redundant VMs with f .

Campus experienced the most SLA violations (0.92 insuf-

ficient VMs) at f = 16 in Case 1 with Lu = f as shown in

Fig. 7c, which is caused by the largest prediction error and

the smallest number of redundant VMs. The prediction error

decreased with f in the case where Lu = 1 as shown in Fig. 5,

but the number of insufficient VMs increased from 0.31 to

0.65 in Case 1 with Lu = 1 because of fewer redundant VMs.

In contrast, the number of insufficient VMs improved from

0.20 to 0.02 VMs in Case 3 with both Lu = f and Lu = 1
because many redundant VMs accommodates request arrival

fluctuations like those shown in Figs. 4c and 4d.

3) Summary: High-frequency control in Case 1 performs

many reconfigurations, which reduces the resource redundancy

but causes many SLA violations, especially when the applica-

tions are controlled with Lu = f . Case 3 oppositely suppresses

the SLA violations but provisions too many redundant VMs,

and Case 2 lies in the middle of this trade-off relationship.

D. Effect of reconfiguration weight factor

Previous subsection explains the trade-off relationship be-

tween VM redundancy and insufficiency when controlled at

high frequency. This subsection clarifies how much the weight

factor Wu/Cu should weigh through the evaluations of the

following two control options:

• Case I: low control frequency (f = 1)

• Case II: high control frequency (f = 16)

Each case was analyzed with (a) the upper bound of PM’s

lead time (Lu = f) and (b) the lower bound of PM’s lead

time (Lu = 1), but Case I with Lu = f was omitted because

it was equal to Case I with Lu = 1. We present the total

reconfiguration numbers per hour and the resource efficiency

as the function of Wu/Cu in Figs. 8 and 9 in the same manner

as Figs. 6 and 7, respectively.
1) Reconfiguration: The total number of reconfigured PMs

per hour was kept around 1 at any value of Wu/Cu in Case I.

In Case II, the PMs were less reconfigured than those in Case

I when Wu/Cu was set to more than 0.4 as shown in Fig. 8a,

while the relocation of VMs from one application to another

was performed more frequently at the corresponding value of
Wu/Cu as shown in Figs. 8b and 8c. For example, when we

chose the middle value of Wu/Cu, i.e. 0.7, the total number of

reconfigured PMs per hour was reduced from 1.2 to 0.4, while

that for reconfigured VMs per hour was increased from 2.5 to

8.5 in World Cup and from 3.2 to 12.4 in Campus.
2) Resource efficiency: The VM pool capacity remained

around 38 in Case I. Fewer redundant VMs in the pool were

provisioned in Case II than those in Case I when Wu/Cu was

less than 0.7, which was slightly affected by the prediction

error caused by Lu, as shown in Fig. 9a. On the other hand,

fewer insufficient VMs in World Cup were provisioned in Case

II than those in Case I when Wu/Cu was more than 0.3 even if

Lu = 16 as shown in Fig. 8b, and those in Campus improved

when Wu/Cu was more than 0.7 even if Lu = 16 as shown in

Fig. 8c. The trade-off relationship between VM redundancy

and insufficiency is therefore balanced when Wu/Cu is given

the value of around 0.7. For example, when we set Wu/Cu to

0.7, the number of insufficient VMs was reduced from 0.29

to 0.11–0.01 in World Cup and from 0.26 to 0.23–0.17 in

Campus web, while maintaining VM pool capacity.
3) Summary: If the controller increases the control fre-

quency f with the smallest weight factor Wu/Cu, it brings

only excessive reconfigurations to the PMs. In contrast, when

it increases f with an appropriate Wu/Cu, it suppresses the

reconfigurations of PMs and improves the timings of the

reconfigurations, as well as increases the reconfigurations of

VMs to reallocate the redundant VMs among the applications;

this process can lead to the reduction of the insufficient VMs

causing SLA violations without increasing the redundant VMs.

Our evaluations demonstrate that when f is increased from 1 to

16 times per hour with Wu/Cu = 0.7, the number of insufficient

VMs is reduced to 0.23–0.01 VMs (2–0.1% of the allocated

VMs) per application and the total number of reconfigured

PMs is reduced to one-third, while maintaining VM pool ca-

pacity of about 38 VMs. Furthermore, the evaluations indicate

that the high-frequency control is effective especially for large

spikes lasting for hours as a result of flash cloud events.

VII. CONCLUSION

In this paper, we proposed a hierarchical and frequency-

aware MPC for bare-metal cloud applications composed of

VMs over PMs. When the control frequency is increased, the

proposed technique improves the timing of reconfigurations for

the PMs without increasing their reconfiguration overhead, as

well as increases the reallocations of the VMs to adjust the

redundant capacity among the applications, which leads to the

reduction of SLA violations without increasing the resource

redundancy level.
This paper focuses on clarifying the effect of higher control

frequency by comparing the assumed existing cloud (i.e., a

cloud composed of the PMs controlled once an hour and the

VMs relocated easily). Moreover, this paper examines only

a bare-metal cloud hosting a web application for individuals

and that for an organization together. For future work, we

plan to evaluate the proposed technique with various control

options. We will also separately evaluate a bare-metal cloud

for individuals and that for an organization, each of which

includes different request arrival characteristics.

REFERENCES

[1] International Business Machines Corporation, “Bare Metal Servers,”
https://www.ibm.com/cloud/bare-metal-servers, accessed Jul. 20, 2018.

[2] VMware, Inc., “Virtualizing Business Critical Applications,”
https://www.vmware.com/be/solutions/business-critical-apps.html,
accessed Aug. 3, 2018.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A berkeley view of cloud computing,” University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb. 2009.

[4] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in
cloud computing: State of the art and research challenges,” IEEE Trans.
Services Comput., vol. 11, no. 2, pp. 430–447, Jun. 2017.

[5] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications
in clouds: A taxonomy and survey,” ACM Comput. Surv., vol. 51, no. 4,
pp. 73:1–73:33, Jul. 2018.

[6] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial
of service attacks: Characterization and implications for CDNs and web
sites,” in Proc. of WWW ’02, May 2002, pp. 293–304.

[7] M. Mao and M. Humphrey, “A performance study on the VM startup
time in the cloud,” in Proc. of IEEE Cloud Computing ’12, Jun. 2012,
pp. 423–430.

[8] Amazon Web Services, Inc., “Amazon EC2 Pricing,”
http://aws.amazon.com/ec2/pricing/, accessed Mar. 27, 2018.

[9] M. D. d. Assunção and L. Lefèvre, “Bare-metal reservation for cloud:
an analysis of the trade off between reactivity and energy efficiency,”
Cluster Comput., Aug. 2017.

[10] A. Srbu, C. Pop, C. erbnescu, and F. Pop, “Predicting provisioning and
booting times in a Metal-as-a-service system,” Future Gener. Comput.
Syst., vol. 72, pp. 180–192, Jul. 2017.

[11] J. M. Maciejowski, Predictive control: with constraints. Prentice Hall,
Sep. 2000.

[12] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in Proc. of IEEE
Cloud Computing ’11, Jul. 2011, pp. 500–507.

[13] H. Ghanbari, M. Litoiu, P. Pawluk, and C. Barna, “Replica placement
in cloud through simple stochastic model predictive control,” in Proc.
of IEEE Cloud Computing ’14, Jun. 2014, pp. 80–87.

[14] T. Lu, M. Chen, and L. L. H. Andrew, “Simple and effective dynamic
provisioning for power-proportional data centers,” IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 6, pp. 1161–1171, Jun. 2013.

[15] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” IEEE/ACM Trans. Netw.,
vol. 21, no. 5, pp. 1378–1391, Oct. 2013.

[16] J. Yao, X. Liu, W. He, and A. Rahman, “Dynamic control of electricity
cost with power demand smoothing and peak shaving for distributed
internet data centers,” in Proc. of IEEE ICDCS ’12, Jun. 2012, pp. 416–
424.

[17] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L. Hellerstein,
“Dynamic service placement in geographically distributed clouds,” IEEE
J. Sel. Areas Commun., vol. 31, no. 12, pp. 762–772, Dec. 2013.

[18] L. Jiao, A. M. Tulino, J. Llorca, Y. Jin, and A. Sala, “Smoothed online
resource allocation in multi-tier distributed cloud networks,” IEEE/ACM
Trans. Netw., vol. 25, no. 4, pp. 2556–2570, Aug. 2017.

[19] T. De Matteis and G. Mencagli, “Keep calm and react with foresight:
Strategies for low-latency and energy-efficient elastic data stream pro-
cessing,” in Proc. of ACM PPoPP ’16, Mar. 2016, pp. 13:1–13:12.

[20] G. Mencagli, “Adaptive model predictive control of autonomic dis-
tributed parallel computations with variable horizons and switching
costs,” Concurrency and Computat.: Pract. and Exper., vol. 28, no. 7,
pp. 2187–2212, May 2016.

[21] M. Gaggero and L. Caviglione, “Predictive control for energy-aware
consolidation in cloud datacenters,” IEEE Trans. Control Syst. Technol.,
vol. 24, no. 2, pp. 461–474, Mar. 2016.

[22] D. Kusic, N. Kandasamy, and G. Jiang, “Combined power and per-
formance management of virtualized computing environments serving
session-based workloads,” IEEE TNSM, vol. 8, no. 3, pp. 245–258, Sep.
2011.

[23] R. Jain, The Art Of Computer Systems Performance Analysis. John
Wiley & Sons, Apr. 1991.

[24] P. J. Brockwell and R. A. Davis, Introduction to Time Series and
Forecasting. Springer-Verlag New York, Inc., Apr. 2010.

[25] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 1, pp. 68–73, Dec. 2008.

[26] R. Hyndman and Y. Khandakar, “Automatic time series forecasting: The
forecast package for R,” Journal of Statistical Software, vol. 27, no. 3,
pp. 1–22, Jul. 2008.

[27] N. Tolia, D. G. Andersen, and M. Satyanarayanan, “Quantifying inter-
active user experience on thin clients,” Computer, vol. 39, no. 3, pp.
46–52, Mar. 2006.

[28] The Internet Traffic Archive, “1998 World Cup Web Site Access Logs,”
http://ita.ee.lbl.gov/html/contrib/WorldCup.html, accessed Apr. 4, 2018.

