8 research outputs found
Radiographers supporting radiologists in the interpretation of screening mammography: a viable strategy to meet the shortage in the number of radiologists.
BackgroundAn alternative approach to the traditional model of radiologists interpreting screening mammography is necessary due to the shortage of radiologists to interpret screening mammograms in many countries.MethodsWe evaluated the performance of 15 Mexican radiographers, also known as radiologic technologists, in the interpretation of screening mammography after a 6 months training period in a screening setting. Fifteen radiographers received 6 months standardized training with radiologists in the interpretation of screening mammography using the Breast Imaging Reporting and Data System (BI-RADS) system. A challenging test set of 110 cases developed by the Breast Cancer Surveillance Consortium was used to evaluate their performance. We estimated sensitivity, specificity, false positive rates, likelihood ratio of a positive test (LR+) and the area under the subject-specific Receiver Operating Characteristic (ROC) curve (AUC) for diagnostic accuracy. A mathematical model simulating the consequences in costs and performance of two hypothetical scenarios compared to the status quo in which a radiologist reads all screening mammograms was also performed.ResultsRadiographer's sensitivity was comparable to the sensitivity scores achieved by U.S. radiologists who took the test but their false-positive rate was higher. Median sensitivity was 73.3 % (Interquartile range, IQR: 46.7-86.7 %) and the median false positive rate was 49.5 % (IQR: 34.7-57.9 %). The median LR+ was 1.4 (IQR: 1.3-1.7 %) and the median AUC was 0.6 (IQR: 0.6-0.7). A scenario in which a radiographer reads all mammograms first, and a radiologist reads only those that were difficult for the radiographer, was more cost-effective than a scenario in which either the radiographer or radiologist reads all mammograms.ConclusionsGiven the comparable sensitivity achieved by Mexican radiographers and U.S. radiologists on a test set, screening mammography interpretation by radiographers appears to be a possible adjunct to radiologists in countries with shortages of radiologists. Further studies are required to assess the effectiveness of different training programs in order to obtain acceptable screening accuracy, as well as the best approaches for the use of non-physician readers to interpret screening mammography
Design, imaging and performance of 3D printed open-cell architectures for porous electrodes: quantification of surface area and permeability
Background: the development of new open-cell porous electrodes for electrochemical flow cells and reactors is demonstrated through the application of 3D printing. The properties of diverse architectures were investigated, including rectangular, circular, hexagonal and triangular cells with linear porosity grades of 10, 20 and 30 pores per inch. Specimens were digitally designed, then 3D printed in stainless steel via selective laser melting. After being examined using scanning electron microscopy, they were characterised in terms of volumetric surface area and porosity with the aid of X-ray computed tomography. Pressure drop measurements were performed over a range of mean linear velocity and Reynolds number, allowing the estimation of Darcy’s friction factor and permeability. Results: volumetric surface area estimated from tomography scans was up to 36% higher than the nominal values due to surface roughness and post-processing algorithms. In contrast, volumetric porosity obtained by tomography agreed fully with measured values. Triangular architectures afforded additional surface area both digitally and according to tomography. The largest pressure drop was found in circular materials, the triangular ones showing the lowest. The 20 ppi triangular architecture had a volumetric surface area of approximately 44.5 cm-1 and a permeability of 2.31 × 10-5 cm2. Conclusion: triangular architectures were preferred due to their favourable combination of high surface area and high permeability with low mass and reduced digital complexity. This provides a strategy to initiate the optimization of 3D printed porous electrodes for electrochemical flow cells and reactors in novel and niche applications
Antagonistic activity of selected strains of Bacillus thuringiensis against Rhizoctonia solani of chili pepper
The aim of this work was to determine, in vitro, the antagonistic effectiveness of 60 strains of Bacillus thuringiensis against damping-off and root and stem rot caused by Rhizoctonia solani. The strains wereobtained from the International Collection of Entomopathogenic Bacillus at the FCB-UANL. During the in vitro dual culture assay only 16 of the strains displayed an inhibitory effect. Six strains were chosen to bescreened simultaneously by volatile antibiotics, thermostability and seedling assay. In the volatile antibiotics assay, the strains GM-11 and GM-121 showed the best inhibitory effect over R. solani growth.None of the strains showed an efficient antagonistic effect during the thermoestability assay. In seedling assay, majority of the antagonistic isolates, GM-23, GM-11and GM-121, were effective in the reduction of R. solani infection. In addition, GM-23 increased the length of pepper seedlings. These results suggest that the B. thuringiensis strains studied have an excellent potential to be used as bio-control agents of R. solani in chili pepper