4 research outputs found
3D analysis of anatomical reactions in conifers after mechanical wounding: first qualitative insights from X-ray computed tomography
The ability of trees to recover from damage beyond the last-formed periderm as well as the drivers and nature of associated wound reactions have been studied for more than two centuries using macroscopic (desiccation, aeration or discoloration of wood) and microscopic approaches (anatomical and chemical reactions). However, no studies currently exist which address large-scale macroscopic and microscopic reactions surrounding wounds in the tangential, axial, and radial directions over continuous segments of tree stems. This note explores the potential of 3D X-ray computed tomography in assessing effects of wounding under natural conditions in European conifers (Abies alba, Larix decidua, Picea abies). We present results from a pilot study and qualitatively evaluate the potential of the approach used in assessing and illustrating the formation and spread of de-differentiated xylem parenchyma cells, xylem decay compartmentalization, resin ducts, and stabilizing compression wood cells