6 research outputs found

    The Stallion Spermatozoa: A Valuable Model to Help Understand the Interplay between Metabolism and Redox (De)regulation in Sperm Cells

    Get PDF
    Significance: Proper functionality of the spermatozoa depends on the tight regulation of their redox status; at the same time these cells are highly energy demanding and in the energetic metabolism, principally in the electron transport chain in the mitochondria, reactive oxygen species are continuously produced, in addition to that observed in the Krebs cycle and during the β-oxidation of fatty acids. Recent Advances: In addition, in glycolysis, elimination of phosphate groups from glyceraldehyde 3-phosphate and dihydroxyacetone phosphate results in the byproducts glyoxal (G) and methylglyoxal (MG); these products are 2-oxoaldehydes. The presence of adjacent carbonyl groups makes them strong electrophiles that react with nucleophiles in proteins, lipids, and DNA, forming advanced glycation end products. Critical Issues: This mechanism is behind subfertility in diabetic patients; in the animal breeding industry, commercial extenders for stallion semen contain a supraphysiological concentration of glucose that promotes MG production, constituting a potential model of interest. Future Directions: Increasing our knowledge of sperm metabolism and its interactions with redox regulation may improve current sperm technologies in use, and shall provide new clues to understanding infertility in males. Moreover, stallion spermatozoa due to its accessibility, intense metabolism, and suitability for proteomics/metabolomic studies may constitute a suitable model for studying regulation of metabolism and interactions between metabolism and redox homeostasis. Antioxid. Redox Signal. 37, 521-537

    Late-stage metastatic melanoma emerges through a diversity of evolutionary pathways.

    No full text
    Understanding the evolutionary pathways to metastasis and resistance to immune checkpoint inhibitors (ICI) in melanoma is critical for improving outcomes. Here we present the most comprehensive intra-patient metastatic melanoma dataset assembled to date as part of the PEACE research autopsy programme, including 222 exome, 493 panel-sequenced, 161 RNA-seq, and 22 single-cell whole-genome sequencing samples from 14 ICI-treated patients. We observed frequent whole-genome doubling and widespread loss of heterozygosity, often involving antigen presentation machinery. We found KIT extrachromosomal DNA may have contributed to the lack of response to KIT inhibitors of a KIT-driven melanoma. At the lesion-level, MYC amplifications were enriched in ICI non-responders. Single-cell sequencing revealed polyclonal seeding of metastases originating from clones with different ploidy in one of the patients. Finally, we observed that brain metastases that diverged early in molecular evolution emerge late in disease. Overall, our study illustrates the diverse evolutionary landscape of advanced melanoma
    corecore