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ABSTRACT.  

 

Significance Proper functionality of the spermatozoa depends on the tight regulation of their 

redox status, at the same time these cells are very energy demanding, and in the energetic 

metabolism, principally in the electron transport chain (ETC) in the mitochondria, reactive 

oxygen species (ROS) are continuously produced, but also in the Krebs Cycle and during the 

beta-oxidation of fatty acids. Recent advances Additionally, in the glycolysis, elimination of 

phosphate groups from glyceraldehyde 3-phosphate and dihydroxyacetone phosphate 

originates as byproducts glyoxal (G) and methylglyoxal (MG); these products are 2-

oxoaldehydes. The presence of adjacent carbonyl groups make them strong electrophiles 

that react with nucleophiles of proteins, lipids and DNA, forming advanced glycation end 

products (AGEs). Critical Issues. This mechanism is behind subfertility in diabetic patients; in 

the animal breeding industry, commercial extenders for stallion semen contain a 

supraphysiological concentration of glucose that promotes methylglyoxal production, 

constituting a potential model of interest. Future directions. Increasing our knowledge on 

sperm metabolism and its interactions with redox regulation, may improve current sperm 

technologies in use, and shall provide new clues to for the understanding of infertility in 

males.  Moreover, stallion spermatozoa due to its accessibility, intense metabolism, and 

suitability for proteomics/metabolomic studies may constitute a suitable model for studies 

of the regulation of metabolism and the interaction between metabolism and redox 

homeostasis.  

 

Key words: spermatozoa, extenders, glucose, ROS, metabolism, methylglyoxal,  

 

INTRODUCTION  

 

Spermatozoa are characterized by highly active energetic metabolism, and detailed studies 

using proteomic approaches show that significantly present pathways in the male gamete, 

are proteins with metabolic functions (6,7,50,63,100,159), sustaining the importance of the 

metabolism in these cells. The energetic metabolism is a process in which ATP is generated 



from the oxidation of nutrients. Consists of reactions in which biological molecules are 

oxidized to simpler molecules; energy released in these processes is harnessed to 

phosphorylate ADP to ATP (144,167).  

Redox reactions must be tightly regulated and are key components of the metabolism; 

transfer of electrons from reduced organic molecules to acceptors, NAD+, NADP+ or oxygen 

are the base of redox reactions. Reactive oxygen species (ROS) like O2
•- and H2O2 are 

byproducts of redox reactions occurring in the metabolism.  

Spermatozoa are provided of sophisticated antioxidant systems in the seminal plasma (52), 

and in the spermatozoa itself (45,46,83,111,112,114,119,129) to maintain these reactions 

under control. In the functionality of the spermatozoa, redox reactions play a major role; 

reversible oxidation of thiols in cysteine residues of key proteins constitute an “on-off” switch 

for the regulation of key spermatic functions. In case these redox reactions lose proper 

regulation, these residues may experience irreversible oxidation leading to the alteration of 

the function and ultimately death of the spermatozoa (135) (Fig 1). 

While is widely accepted that the human spermatozoa are cells that produce energy mainly 

through glycolysis (24,156), recent research shows an important metabolic plasticity 

(6,18,24); is possible the influence of oviductal factors regulating the switch among 

metabolic pathways in the spermatozoa  (145). However, the mechanisms regulating the 

switch from predominance of one type of metabolism to another remain largely unknow, 

although recent research is providing important information in this topic as will be discussed 

in pertinent sections of this review (66,180-182).   

On the contrary, growing scientific evidence shows that oxidative phosphorylation in the 

horse is the main route producing ATP to be used for motility and to support the integrity 

and functionality of the plasmalemma (34,36,37,57,59,137,140,160) in the spermatozoa.  The 

stallion spermatozoa have a limited glycolytic activity although glycolysis may support 

sperm velocity through glycolytic enzymes in the flagellum (37), but, despite this scientific 

evidence, commercial extenders contain supraphysiological amounts of glucose.  

Moreover, recent evidence show that the spermatozoa have an important metabolic 

plasticity, these cells can use amino-acids, sugars, and fatty acids and source of energy (100). 

The identification of the receptor for insulin in the spermatozoa, highlights the sophisticated 



metabolism of the male germ cells (2,11,139). The supraphysiological concentrations of 

glucose seen in diabetic conditions in human beings cause male infertility. The molecular 

pathways leading to sperm malfunction in diabetic patients share many of the aspects seen 

in stallion spermatozoa stored in extenders containing high glucose concentrations 

(8,9,73,77,81,89,96,97,138,152). 

The commerce of equine semen for artificial insemination is an important aspect of horse 

breeding (133). The generalized introduction of artificial insemination and other techniques 

of assisted reproduction in the second half of the past century caused a big expansion of 

this commerce of genetic material.  The majority of the semen extenders were formulated 

by that time, are based on high concentrations of glucose, well beyond of physiological 

concentrations of this hexose, and are still in use. Initially extenders were designed with this 

concentration of sugar to provide physiological osmolality and a source of energy (16,171).  

However, the formulation of classic extenders enters in conflict with current scientific 

information on the sperm metabolism.  

The aim of this review is to offer an updated overview of the current knowledge regarding 

the cross-link between metabolism and redox regulation as a major factor determining 

sperm viability, using the stallion spermatozoa as a model of the sperm malfunction caused 

by supraphysiological concentrations of glucose.  For this, the terms “oxidative stress”, 

“redox regulation”, “spermatozoa” “interaction between metabolism and redox 

regulation/oxidative stress in the spermatozoa”, were compiled after exhaustive literature 

search in the Web of Science and PubMed. We only included articles published in English 

and available until the end of September 2021.   

Applicable selected publications referring to these concepts in other cellular models were 

included to provide comparative insights.  

 

Overview of sperm physiology      

These cells are formed in the germinal epithelium in the testis; this is formed by germ cells 

in different stages of development, intermingled with Sertoli cells that proportionate 

structural support and nursing. The formation of the spermatozoa is highly regulated and 

complex phenomena, involving serial steps of stem cell proliferation and renewal, genetic 



remodeling, and reduction of chromosomes accompanied by major morphological 

transformations (32)  . 

The first step of the spermatogenesis is the differentiation of spermatogonia from a stem 

cell pool. The next step, spermatocytogenesis is characterized by numerous mitotic divisions 

increasing the number of spermatogonia. Then a meiotic phase includes duplication and 

exchange of genetic information and two meiotic divisions to form round haploid 

spermatids. During the spermiogenesis phase round spermatids experience compaction, 

silencing of DNA, elongation of the nucleus, and most of the histones are replaced by 

transition proteins and then by protamines. Development of the tail of the spermatozoa 

from the centriole, the acrosome (from the Golgi´s apparatus), the mitochondria relocate to 

the midpiece, and other organelles and most of the cytoplasm are lots in this phase. Finally, 

morphologically mature spermatozoa are released in the lumen of the seminiferous tubules 

during spermiation (19,55,150,153).  Proteomic studies disclose critical metabolic changes 

during sperm maturation, affecting proteins involved in redox regulation and lipid and 

carbohydrate metabolism (146).  

Cellular generation of ROS was identified for the first time in the spermatozoa (166), bull 

spermatozoa were able to generate H2O2  as consequence of cellular respiration. The H2O2 

produced inhibited cellular respiration;  to prevent this effect was concluded that bovine 

spermatozoa had mechanisms for the elimination of H2O2 at a low rate,  and thus maintaining  

H2O2 at  physiological concentrations. The concept of ROS as  toxic byproduct of sperm 

metabolism without any role was largely considered in the past; but nowadays, it is known 

that crucial functions of the spermatozoa are redox regulated, and redox regulation is 

nowadays a major area of research in the study of sperm biology (38,83,92,110,116-118,120). 

Countless cellular processes are redox regulated.  

In spermatozoa, redox regulation has been extensively studied in relation to capacitation 

(5,43,83,93,110,154,155,173). The maturational process that sensitizes spermatozoa to 

recognize and fertilize the oocyte is termed capacitation. This process includes changes in 

the spermatozoa such as loss of cholesterol from the plasma membrane, removal of coating 

materials from plasmalemma, a rise in intracellular Ca2+, increase in intracellular cAMP, and 

an increase in the phosphorylation in tyrosine of numerous key proteins. 



During capacitation bicarbonate stimulates the oxidation of cholesterol forming oxysterols 

that are removed from the membrane by albumin(1,17,179) Different aspects are worth 

mentioning in the context of the present review; the first relates to the fact that 

cryopreservation impairs this oxidative mechanism, that can explain why cryopreserved 

spermatozoa have reduced fertility (21). The stallion spermatozoa do not capacitate 

efficiently in vitro, this is one of the reasons explaining the poor results with conventional 

IVF in the horse.  

This particular aspect has been recently review(84), and the reader is referred to it for further 

details; however, the possibility that this fact may relate to the specific redox regulation in 

the stallion spermatozoa is an intriguing possibility that warrants to be further research. 

Intracellular glutathione (GSH) is much higher in horses than in other domestic species, 

perhaps this relates to known difficulties to capacitate in vitro.  

Other membrane changes are linked to plasma hyperpolarization of the plasmalemma  

(15,28,43), and spermatozoa alkalinization (38). Not all the spermatozoa in the ejaculate are 

able to capacitate, only a subpopulation can experience capacitation (43,93). Redox 

chemistry regulates Tyrosine phosphorylation (38,68,85,113,115,120,148,155,174). Motility 

may be regulated by tyrosine phosphatases (PTPs) (38,47), which are intracellular targets for 

ROS (61). The activity of PTPs depends on a conserved cysteine (Cys) residue, which oxidation 

inhibits the enzyme (39,69), ROS also are able to activate kinases. In addition to hydrogen 

peroxide, other species such as hydrogen sulfide and lipid peroxides (LPO) can inactivate 

PTPs  (48), its activity is regulated through the reversible oxidation of specific cysteine 

residues in target proteins (69).  

Reduction of oxidized cysteine (Cyss) residues is necessary in order for them to function in 

a reversible manner, thus depending on the adequate availability of reducing molecules, 

including the peroxiredoxin (PRDX) family of antioxidant enzymes (69). PRDXs are present in 

the spermatozoa (83,92,110,128) being critical for the proper sperm functionality of these 

cells. To reverse the Cyss residue peroxiredoxins use thioredoxin or GSH. Reduction of 

sulphinic acid (SO2H the higher oxidation state) precise sulfiredoxin or sestrins (69,76). This 

reversible and sequential oxidation of PRDXs permits tight regulation of peroxiredoxin 

functionality, a model of regulation defined as a “floodgate” (177,178).  



The spermatozoa are cells rich in thiols (86) associated with proteins, indicating that 

regulated redox reactions are a major regulation mechanism. Spermatozoa are 

transcriptionally silent cells being thus dependent on post transcriptional modification of 

proteins for their regulation.  

Mitophagy has been recently described in spermatozoa (10),   this process depends of redox 

reactions on of Cys residues on specific proteins; this is the case of Cys-dependent proteases 

(69). In this sense, the cysteine protease HsAtg4 is target of H2O2, that oxidizes a residue 

close to the protein’s catalytic site (149).  

Other functions depending of regulated oxidation -reduction reactions are the control of 

motility (47),  and the formation of the sperm reservoir through binding of the spermatozoa 

to the oviductal epithelium (64,65,162).  The pattern of motility changes in the female genital 

tract, from a pattern, termed activated motility characterized by linear progression to a 

pattern characterized by the high amplitude of the flagellar movement and high lateral 

amplitude of the head displacement; this latter kind of movement, hyperactivated motility, 

is necessary to penetrate the oocyte.   

The transition of one to another kind of movement occurs in response to changes in the 

environmental conditions in different sections of the female genitalia through the activation 

of a pH-dependent calcium sensor (30). Recently, has been found an EF-hand-calcium-

binding domain-containing protein-9 (EFCAB9) that forms a complex with the CatSper 

subunit CATSPER  and is necessary for pH-dependent and Ca2+ sensitive activation of the 

CatSper channel; EFCAB9 interacts with CATSPER  in a  Ca2+  sensitive manner and 

dissociates at elevated pH, this protein is an intracellular pH-dependent Ca2+ sensor that 

triggers changes in sperm motility (71,88).  

All these changes imply that the spermatozoa demand a high amount of energy that is also 

dependent on their physiological status, nowadays, in spite that either more glycolytic or 

more oxidative phosphorylation dependent species exist, growing scientific consensus 

indicates that both forms of the metabolism cooperate to provide energy to the 

spermatozoa, however, the mechanisms controlling the switch from the predominance of 

one or another strategy for energy production still are poorly understood. Next, we will 



provide an overview of sperm metabolism, recent findings on its regulation on spermatozoa, 

and its implications on redox regulation. 

 

A brief overview on sperm energetic metabolism  

Glycolysis in the spermatozoa.- The metabolization of glucose to pyruvate is contemplated 

as the main route producing of ATP in the spermatozoa of humans (176) and boars (98), 

particularly in aerobiosis (121). Sperm incorporates hexoses through specific transporters 

GLUTs (23). After incorporation, hexokinase phosphorylates glucose to glucose 6-phosphate. 

Then can follow different pathways, pentose phosphate pathway, glycogen synthesis, and 

glycolysis. The enzyme pyruvate dehydrogenase oxidized pyruvate to Acetyl CoA. The NAD 

accepts the electrons released in this process forming NADH+. Pyruvate was considered the 

main glycolytic product used by the mitochondria to feed the tricarboxylic acid or Krebs 

cycle,  however, nowadays is known that reduction of pyruvate to lactate under aerobic 

conditions occurs (Warburg-Like effect) (121).  

In the mitochondria  lactate is oxidized to pyruvate in the Mitochondrial Lactate Oxidation 

Complex; intra-mitochondrial oxidation of lactate contributes to mitochondrial energetics 

(20).  Evidence of the role of lactate in the metabolism of stallion spermatozoa has been 

recently reported (36),  with the discovery of a lactate dehydrogenase in the mitochondrial 

matrix that transforms lactate into pyruvate (159), lactate is more effective than pyruvate 

sustaining the motility of the stallion spermatozoa (36). The importance of lactate for sperm 

metabolism was evidenced in the late 70s of the past century when Storey and Kayne (157) 

described the aerobic oxidation of lactate in rabbit sperm mitochondria.  

Monocarboxylate transporters (MCTs) are present in the spermatozoa (20), specifically, the 

MCT1 is located in the sperm head (54). In a similar fashion as occurs in the horse,  bovine 

spermatozoa use lactate for sperm motility as efficiently, or even better, than glucose (74). 

Sertoli Cells in the testis secrete lactate instead of glucose to fuel sperm motility constituting 

a cell-to-cell lactate shuttle (20,60). Sertoli cells, as stallion spermatozoa, convert glucose to 

lactate under aerobic conditions to support mitochondrial respiration; it has been postulated 

that Sertoli cells have a “Warburg like” metabolism, with a highly active glycolytic machinery 

and preferential production of lactate, even in presence of high oxygen (121).   



As previously mentioned, evidence of oxidation of lactate to pyruvate is present in horse and 

in boar spermatozoa; in boars inhibition of oxidation of external lactate in presence of the 

MCT inhibitor -cyano-4-hydroxicinnamate and by the inhibitor of LDH oxamate occurs, 

evidencing that lactate is transported into mitochondria to be oxidized to pyruvate (20,60).  

Different reports indicate that a gluconeogenesis linked glycogen metabolism is present in 

spermatozoa (4,13,130); lactate is converted to glycogen by the mature spermatozoa, and; 

in dogs, at least, is considered to play a major role a source of energy for capacitation.  

 

Pentose Phosphate Pathway (PPP).- The PPP is the principal source of NADPH, though 

NADPH can also originate by degradation of metabolites of the tricarboxylic acid cycle (TCA), 

and by the oxidation of fatty acids and utilization of ketone bodies (29,42,70,131).  The PPP 

comprises two branches. The oxidative produces NADPH and ribonucleotides; the first 

reaction is the dehydrogenation of glucose-6-phosphate by  glucose-6-phosphate 

dehydrogenase (G6PD) to yield 6-phosphogluconolactone (6PGL) and the reduction of one 

molecule of NADP+ to one of NADPH (131); 6PGL is then hydrolyzed spontaneously or by 

the action of 6-phosphogluconolactonase (PGL) into 6 phosphogluconate. Then, this 

product generates ribose 5-phosphate and the second molecule of NADPH, by the action of 

6-phosphogluconolactonase (91).  

The nonoxidative branch comprises reversible reactions using glycolytic intermediates, as 

fructose 6-phosphate and glyceraldehyde 3 phosphate to be converted in pentose 

phosphates in a reversible manner (131). In the context of this review the production of 

NADPH as reducing power to recycle oxidized glutathione (GSSG) to reduced glutathione 

(GSH), is the principal role of this pathway in spermatozoa (44,105,168,169).   

However, the roles of NADPH in the synthesis of fatty acids in the spermatozoa also has to 

be considered, especially in the context of recent proteomics studies (6), suggesting that this 

pathway may be active in spermatozoa (100). In ejaculated spermatozoa, the main function 

of the PPP, is the production of reducing power, and thus the PPP is tailored to accelerate 

the oxidative branch and redirect the non-oxidative branch to re-synthesize fructose 6 

phosphate to be transformed to glucose 6 phosphate and feed the oxidative branch (131).  

 



Tricarboxylic acid Cycle.- The tricarboxylic acid cycle (TCA) is a series of reactions occurring 

in a closed-loop (103). The cycle starts with the reaction of acetyl CoA (2C) with oxaloacetate 

(OAA, 4C) giving citrate (6C).  The acetyl CoA derives from the oxidation of pyruvate, fatty 

acids, and the metabolism of different amino acids, especially leucine, isoleucine, and 

tryptophan. Recent data indicate that lipid and amino acids metabolism are present in the 

spermatozoa of different species (6,100,159,163).  

Pyruvate may derive from citrate by the mitochondrial enzyme acetyl CoA synthetase short-

chain family member 1 (ACSS1), present in the stallion spermatozoa (100). The citrate is 

transformed in its isomer, isocitrate and the cycle follows with two reactions of oxidative 

decarboxylation; isocitrate is converted to the 5C -ketoglutarate (-KG) and shortly 

afterward to the 4C succinyl CoA, liberating two molecules of CO2 and two NADH.  

The next step is the conversion of succinyl CoA to succinate, a  reaction coupled to the 

generation of GTP, that can be transformed to ATP (103). Succinate is oxidized to fumarate 

(4C), and two hydrogen atoms are relocated to FAD originating two FADH2, through the 

action of succinate dehydrogenase (SDH), this enzyme also participates in the electron 

transport chain (ETC). Then fumarate converts into malate and this into oxaloacetate that 

combines with another molecule of acetyl CoA to close and continue the cycle (103). The 

first step in the TCA is the generation of citrate from acetyl CoA and oxalacetate, the cycle 

can be fed at diverse points, such as the transformation of pyruvate to OAA by pyruvate 

decarboxylase and the glutaminolysis, that is the conversion of glutamine in glutamate and 

then to -ketoglutarate (104).  

Moreover, the oxidation of lactate oxidation is an important mechanism sustaining the TCA 

cycle (102). Both pathways may be also relevant in spermatozoa.  

 

Oxidative phosphorylation. - Mitochondria are semiautonomous organelles crucial for 

cellular energetics, that through oxidative phosphorylation (OXPHOS) produce most  ATP in 

the cell (170). These organelles have many other important functions, such Ca2+ regulation, 

control of the lifespan of the spermatozoa, and production of ROS with regulatory functions; 

for example, recently has been described that capacitation in the human spermatozoa is 



dependent of ROS generation in the spermatozoa,  and is independent of the presence of 

glucose, suggesting that human spermatozoa have a notable metabolic plasticity (26).  

In the OXPHOS pathway enzymes are coordinated by a cascade of oxidation-reduction 

reactions organized in protein complexes (I-V); these are located in the inner mitochondrial 

membrane (170), there are also two soluble factors, cytochrome c (situated in the 

mitochondrial intermembrane space) and coenzyme Q. This set of proteins is known as the 

electron transport chain (ETC).  The ETC transfers electrons to reduce molecular oxygen to 

water, in this process is generated energy that is used to produce ATP.  

The ETC is coupled to the TCA cycle through the electron transport carriers NADH and 

FADH2, which donate electrons to the ETC. The complexes I and II in the ECT mediate the 

transfer of two electrons from NADH and FADH2 respectively, to coenzyme Q; this latter can 

also receive electrons from the metabolism of fatty acids, amino acids, and choline. The 

reduced coenzyme Q donates two electrons to complex III and transfers these two electrons 

to cytochrome C, to reduce O2 to water. This series of redox reactions cause changes in the 

conformation of the ETC that responds pumping out H+ to the intermembrane space 

origination an electrochemical gradient known as mitochondrial membrane potential (m). 

This can be measured using probes like JC-1(132,136).  

The H+ driven force generated by complexes I, III and IV is used by the ATP synthase 

(complex V) to produce ATP phosphorylating ADP. The dependency of the ATP generated 

in the ETC in the stallion spermatozoa has been revealed by numerous studies (34-

37,57,59,62,100,122,135,140,159,164,172).  

The well-known production of the radical superoxide O2
•- in the mitochondria, is linked to 

the activity of the ETC, which is reported to be a major source. The O2
•-.  derives from the 

addition of a single electron to O2, up to 2% of total oxygen is converted to O2
•-. under 

physiological conditions in the complexes, I and III (37,140) . Other sources of mitochondrial 

ROS are different flavoenzymes in the mitochondria. A high rate of mitochondrial ATP 

production is linked to increased production of mitochondrial ROS being this effect specially 

relevant in the equine spermatozoa (57). 

Once the mechanism for control the redox homeostasis are overpassed, excessive ROS 

impairs both the stability of the ETC proteins and also the transcription of mitochondrial 



proteins (180) leading to sperm malfunction and finally dead; different forms of ROS 

triggered sperm death have been described, these forms resemble apoptosis and 

ferroptosis, but with specific sperm particularities(3,123,126). The link between excessive 

production of ROS and sperm malfunction have been recognized for decades, both in 

human reproductive medicine and animal breeding, and antioxidants are frequently used in 

the treatment of male factor infertility (41,99,101,134,151), however aspects  related to the 

interaction between sperm metabolism and redox regulation have received much less 

attention both in human and animal spermatology.  

 

Generation of Reactive Oxygen and Nitrogen Species in the TCA cycle and in the ETC  

 

The generation of O2
•-  in the mitochondria is well-known and has been previously discussed. 

Specific enzymes of the TCA cycle can be major sources of ROS, specifically the  - 

Ketoglutarate dehydrogenase and glycerophosphate dehydrogenase (161). Unregulated 

production of ROS is behind sperm malfunction; being ETC in the mitochondria the main 

source of ROS in the spermatozoa (37,140).  The ability of O2
•- to diffuse across membranes, 

is limited by its anionic character with most of the reactions occurring in the mitochondria. 

Principal reactions of O2
•- are the spontaneous or catalyzed dismutation to H2O2, reaction 

with FeS centers, and the reaction with nitric oxide •NO leading to the generation of 

peroxynitrite (ONOO-)(144,167).   

Hydrogen peroxide, which is a non-radical oxidant, can diffuse across cellular membranes.  

The H2O2 is a weak oxidant that through the reversible oxidation of thiols in cysteine residues 

has important regulatory functions, however, its reaction with metal centers can produce the 

highly toxic hydroxyl radical (•OH). Although peroxynitrite is a stable molecule, is a potent 

oxidant that reacts with CO2 and electrophilic transition metal centers yielding different 

potent oxidants, such as nitrogen dioxide (NO2), the carbonate radical (CO3
•-), and oxo-metal 

complexes. The peroxynitrous acid (ONOOH) can experience a proton catalyzed dissociation 

to NO2 and •OH. All these radical species derived from peroxynitrite may oxidize, peroxidize 

and nitrate many mitochondrial components. Nitric oxide (•NO) and nitric oxide derived 

species, are also regulatory molecules in the sperm mitochondria (109,183).  



 

Lipid metabolism.  

 

Fatty acid metabolism provides energy to the spermatozoa, recent proteomic studies stress 

the importance of fatty acids supplying energy to these cells (6,12,53,100,106,158,159), 

through mitochondrial beta-oxidation of short, (less than 8 carbons), medium (between 8 

and 12 carbons) and long-chain fatty acids to acetyl CoA, that enters the Krebbs Cycle and 

then the energy released is used in the ETC to generate ATP through OXPHOS. Evidence 

supporting the presence of this metabolic pathway, at least in human (6,7) and stallion 

spermatozoa (159), include proteomic studies and functional experiments in which the use 

of etomoxir (an inhibitor of carnitine palmitoyl-transferase I) to inhibit beta-oxidation 

reduces sperm motility. The human spermatozoa, using peroxisomal enzymes, are able to 

oxidize long-chain fatty acids (VLCFA) (6,7).  

A recent study using bovine spermatozoa as a model, provides evidence of the use of 

saturated fatty acids to produce ATP via mitochondrial ß-oxidation(75) to sustain linear 

motility. Bovine spermatozoa incorporate saturated fatty acids through the CD36 and GOT2 

channels located in the mid-piece. Then they are metabolized through mitochondrial ß-

oxidation (75). Some reports also indicate the intrinsic saturated fatty acids may also be used 

as a source of energy by the spermatozoa (6,53,94). Recent proteomic studies from our 

laboratory suggest that lipid metabolism may be predominant in stallion spermatozoa (100).  

Interestingly, stallions showing a high activity of this metabolic pathway are more resistant 

to the stress of cryopreservation, showing better sperm quality after freezing and thawing 

(50). As a metabolic process, mitochondrial ß-oxidation of fatty acids causes the formation 

of O2
•-. and H2O2  (161).  

 

Metabolic disfunction, production of ROS in the spermatozoa  

 

As previously discussed, energy metabolism consists of reactions of oxidation of biological 

molecules to simpler compounds, the energy liberated in this process, which is 

thermodynamically favorable, is used to phosphorylate ADP, producing ATP  (144,167).  In 



the redox electrons are transferred from reduced molecules to molecules such as NAD+, 

NADP+ or oxygen that are the final acceptors of electrons and are crucial elements of the 

energetic metabolism. ROS are products of these reactions that participate in cellular 

physiology, but if deregulated can cause severe cellular damage.  

Hydrogen peroxide (H2O2) and the superoxide ion (O2
•-), are not very reactive and can be 

tightly regulated by antioxidant enzymes. However, upon the reaction of O2
•-, with nitric 

oxide •NO, peroxynitrite (ONOO−) is produced. On the other hand, in the reaction of H2O2 

with Fe2+ of Fe3+ the highly reactive hydroxyl radical (•OH) is formed.  Lipids, proteins, and 

DNA are targets of the attack of these highly reactive radicals if the redox homeostasis is 

lost. Also, enzymes regulating metabolism are targets of this attack; this is one of the factors 

explaining why mitochondrial oxidative attack leads to further production of ROS (37,143), 

activation of glycolysis impaired OXPHOS.  

This suggests that ROS may deregulate glycolysis and deregulated glycolysis may deregulate 

redox homeostasis (87). Overall, the intimate relation between energetic metabolism and 

reactive oxygen species shall be considered as a critical hub explaining both sperm 

physiology and sperm malfunction (57,58,83,92,135).   

 

Formation of electrophilic 2-oxoaldehydes.  

 

During glycolysis, glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (40),  lose 

phosphate groups, during this step glyoxal (G) and methylglyoxal (MG) are continuously 

produced. Methylglyoxal and glyoxal are 2-oxo aldehydes. These 2-oxoaldhydes due to their 

adjacent carbonyls (Fig 2), are strong and highly reactive electrophiles that attack 

nucleophiles in proteins, lipids, and DNA, causing the formation of advanced glycation end 

products (AGEs) (Fig 3) (107). In spite of their cytotoxicity and their capacity to damage 

cellular DNA, these compounds, under proper regulation, may also have regulatory 

functions.  

Furthermore, MG can form adducts with Superoxide dismutase 1 (SOD1) and reduce the 

ability of the cells to maintain redox homeostasis (141). This is particularly important in the 



horse; SOD1 is the most important constituent of the antioxidant system in the spermatozoa 

(50,51).  

When stallion spermatozoa is extended and stored in commercial media containing very 

high glucose concentrations the production of these 2-oxoaldehydes is unavoidable (125). 

Recent proteomics studies link higher amounts of the enzyme fructose bisphosphate 

aldolase and poor motility and velocities; this is the enzyme involved in splits of 1, 6 fructose 

bisphosphate in dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate 

(G3P), are precursors of G and MG (49). Production of G, and especially MG was concomitant 

with reduced motility and sperm velocities, a drop in mitochondrial membrane potential, 

and an increment of the production of ROS (49,125). 

To the contrary, in extenders formulated with 1mM glucose the production of M and MG is 

significantly reduced, linked to better sperm functionality(125). The GSH is a major 

mechanism of control of 2 oxoaldehydes(144). In this sense, the understanding of the role 

of GSH in the regulation of sperm redox homeostasis has been recently expanded with the 

finding of the SLC7A11 x-CT glutamate/cystine antiporter in the stallion spermatozoa 

(126,127) (Fig 4). Moreover, incorporation of cystine may be critical, since the 

transsulfuration pathway seems incomplete in stallion spermatozoa (127). This antiporter is 

constitutively expressed in the spermatozoa and exchanges intracellular glutamate for 

extracellular cystine. 

It is interesting that spermatozoa is one of the few cells constitutively expressing the  

SLC7A11 along with thymus, spleen and brain(33); mRNA is present in testis and the 

SLC7A11 knock out mouse display subfertility (67). The SLC7A11 is upregulated in many 

cancer cell lines (14,80), interestingly, and as seems to occur as well in the spermatozoa, high 

expression of the SLC7A11 in cells, is linked to high activity of the PPP (90), with cells 

expressing high amounts of this protein expressing also high amounts of enzymes involved 

in the PPP, particularly G6PD. Incorporation of cystine through this antiporter, requires 

intracellular reduction of cystine to cysteine, this process consumes high amounts of NADPH, 

generated in the PPP, then cysteine is used for GSH synthesis (124,127).   

The evidence showing GSH synthesis in the spermatozoa include the presence in the 

spermatozoa of the glutathione synthetase (GSS) and gamma-glutamylcysteine ligase 



(GCLC), studies demonstrating the activity of the enzymes that synthesize GSH using the 

specific inhibitor of the GCLC, L-Buthionine sulfoximide (BSO), and the use of mass 

spectrometry for measurement of GSH (124). Recent findings in spermatogonia support the 

role of GSH and cystine coupled with the PPP pathway in the redox regulation of these cells 

(142), moreover and in accordance with our findings in mature stallion spermatozoa the 

transsulfuration pathway is not a source of cysteine (127).  

 

The concentration of glucose in current extenders must be reconsidered  

 

Glucose and fructose in high concentrations, well above the physiological, have been 

incorporated to most extenders for semen conservation in animal breeding. However, a 

growing body of evidence from scientific research, suggests that this approach may be 

incorrect. While frequently used concentration of glucose in currently used extenders for 

stallion spermatozoa range from 80 to 300 mM concentrations of glucose in the mare’s 

oviduct are in the micromolar range. Excessive consumption of highly processed sugars is 

now a major issue in public health, evidences show that excessive consumption increases 

the risk of diabetes, many types of cancer, and cardiovascular and neurodegenerative 

diseases (31,78,95).  

In a similar fashion, very high concentrations of glucose in the extenders may be causing 

significant damage to the spermatozoa. For a long time the main source of energy in the 

spermatozoa was the subject of intense debate, nowadays growing consensus establish that 

while species-specific differences may be present, spermatozoa can use different pathways 

to obtain energy. Interestingly,  first reports on the metabolic plasticity of the spermatozoa 

were done in the first decades of the past century by researchers at the Universities of 

Wisconsin and Pennsylvania (156).  

In regard to stallion spermatozoa, and as previously discussed, according to current 

biochemical research that in spite that glycolysis may be necessary to support sperm 

velocities (37,79,140), spermatozoa produce most of their energy through OXPHOS; due to 

its intense mitochondrial activity radical superoxide (O2
•-) is also generated as a byproduct.   



The stallion spermatozoa may use amino-acids and fatty acids as relevant sources of energy 

(6), recent studies using proteomic approaches indicate that stallion spermatozoa oxidize 

fatty acids (59,100,159). Altogether this new knowledge has been conducted to design new 

extenders that significantly expand the lifespan of the spermatozoa (56,59).  These extenders 

reduce glucose toxicity and sustain a more efficient sperm metabolism. Supraphysiological 

concentrations of glucose or inefficient utilization cause cellular damage (22), this situation 

is characteristic of Diabetic conditions, extremely prevalent in humans, and intensive 

research on the molecular mechanisms behind glucose toxicity has been done, however, 

studies on glucose toxicity on the spermatozoa are scarce.  

In horses the physiological concentration of glucose is 5 mM, concentrations in the oviduct 

reported are 300 M (25), then extenders in use expose stallion spermatozoa to supra-

physiological glucose concentrations potentially leading to glucose toxicity (87); this may be 

due to involving including the excessive generation of the 2- oxoaldehydes MG ang G as 

described in the previous section. Other mechanisms include direct induction of ROS by 

glucose, activation of MAP kinase and Ca2+ mediated mitochondrial fission (108,165), 

increased polyol pathway activity, that consumes NADPH impairing the reduction GSSG,  

depleting GSH (22). 

Hyperglycemia activates a pathway that involves diacylglycerol (DAG) protein kinase C (PKC) 

and NADPH-oxidase; activation of this pathway causes overproduction of ROS and 

mitochondrial damage.  Mitochondrial damages increase mitochondrial production of O2
•- 

that inhibits glyceraldehyde 3-phosphate dehydrogenase (GAPDH) diverting metabolites 

upstream of the glycolysis pathway, resulting in increased flux of dihydroxyacetone 

phosphate (DHAP) to diacylglycerol, that activates protein kinase  C (PKC) (22,108), DHAP is 

precursor MG (27,72). In addition, high glucose concentration predisposes apoptosis, 

ferroptosis, necroptosis and other types of cell death (82). The situation of current protocols 

for conservation seminal dose on the equine breeding industry, is a natural occuring model 

of hyperglycemia induced sperm damage.  

 

Itaconate regulates the switch between glycolysis and the pentose phosphate pathway 

 



Sperm cells depend on GSH to regulate their redox state, to recycle GSSG NADPH is needed.  

Recently, a mechanism that the spermatozoa use to adjust the energy metabolism and the 

redox homeostasis has been disclosed (180,182). In boar spermatozoa, itaconate regulates 

the switch from glycolysis to the pentose phosphate pathway (Fig 5). Boar spermatozoa 

incubated in a modified commercial media containing moderate amounts of glucose 

(30mM) showed increased mitochondrial activity and increased itaconate production. This 

increased production of itaconate activates the PPP in detriment of glycolysis maintaining 

redox homeostasis, that in addition results in improved sperm motility (182).  

These findings have great importance and provide an explanation on how the spermatozoa 

adjust their metabolism to changes in the different environments, including different 

concentrations of glucose (1.4 mM in the seminal plasma to 300M in the oviduct) (147),  

that these cells are exposed to, in their travel to the oviduct to fertilize the egg. Regulation 

of the cellular state through signals released from the mitochondria are common in many 

cell lines, mitochondrial signals regulating cellular state include, the mitochondrial 

metabolites fumarate, succinate and itaconate, mitochondrial reactive oxygen species (mt 

ROS) and mitochondrial DNA (mt DNA) (175).  

Recent reports from our laboratory in stallion spermatozoa, showed increased GSH content 

and improved motility, concomitant with increased succinate, fumarate and malate  when 

GDH-1 was inhibited (126), furthermore recent proteomic studies show that the 

mitochondrial aconitase hydratase is more abundant in the spermatozoa of  stallions with 

better motility, this enzyme catalyzes the transformation of citrate to isocitrate via cis 

aconitate (49);  these findings suggest that regulation of sperm metabolism and redox status 

mediated by TCA cycle metabolites is also present in horses.  

 

CONCLUSIONS AND FUTURE DIRECTIONS  

Spermatozoa are cells with intense demand for energy, that vary along their life cycle. 

Specifically, their journey through the female reproductive tract to reach and fertilize the 

egg, the preparatory processes of capacitation and the acrosome reaction depend on 

adequate sources of energy. The energetic metabolism involves oxidation-reduction 

reactions and the production of ROS is unavoidable. The maintenance of redox homeostasis 



is necessary for sperm functionality, thus, the study of the interactions between metabolism 

and redox reactions is a critical field to improve the understanding of infertility in humans 

and sperm biotechnologies in humans and animals (Fig 6).  

Numerous reasons make the stallion a good model for redox-metabolic studies in the 

spermatozoa; the intense mitochondrial activity and the intense production of ROS as 

subproducts, the recent discovery of sophisticated redox regulatory mechanisms, and finally 

the glucose-induced toxicity caused by some commercial extenders. Particularly relevant is 

becoming the presence of very high concentration of glucose in commercial extenders for 

stallion spermatozoa, the molecular mechanisms behind this glucose-induced damage may 

constitute a model for infertility seen in diabetic patients, being a model for the study of 

infertility in this disease. 
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ABBREVIATIONS  

ACSS:1 acetyl Co A synthetase short-chain family member 1  

AGEs: advanced glycation end products  

https://sede.micinn.gob.es/facilita/detalleExpedienteAction.do?filtrar=false&estadosSelect=&agrupacion=&ordersOrder=&CHECK=c99e500189&busquedaAvda=&codSolic=&codTram=&nombre=&fechaIni=&fechaFin=&EXP_ID=263480


-KG: alpha-ketoglutarate  

BSO: L-Buthionine sulfoximide  

DAG: diacylglycerol  

DHAP: dihydroxyacetone phosphate 

ETC: electron transport chain 

G: glyoxal  

GAPDH: glyceraldehyde 3-phosphate dehydrogenase 

G6PD: Glucose-6-phosphate 1-dehydrogenase 

GLUTs: glucose transporters  

GSG: glutathione 

GSSG: oxidized glutathione 

GSS: glutathione synthethase  

GCLC: gamma glutamylcysteine ligase  

H2O2: hydrogen peroxide  

LDH: lactate dehydrogenase  

MG: methylglyoxal 

MCTs: monocarboxilate transporters  

•NO: nitric oxide 

O2•- :superoxide anion  

OAA: oxaloacetate 

•OH: hydroxyl radical  

ONOO− :peroxynitrite  

OXPHOS: oxidative phosphorylation 

PKC: protein kinase C 

PPP:  pentose phosphate pathway 

RNS: reactive nitrogen species  

ROS: reactive oxygen species  

SDH: succinate dehydrogenase 

SLCT7A11 x-CT: soluble carrier family 7 member 11 -glutamate cystine antiporter 

SOD1: superoxide dismutase 1  



VLCFA: very long-chain fatty acids  
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FIGURES 

 

FIG. 1. Overview of the role of ROS in mammalian sperm function. ROS have important 

regulatory roles in the spermatozoa mainly through the reversible oxidation of thiol groups, 

principally in cysteine residues. However, if redox homeostasis is lost uncontrolled and 

unregulated production of ROS causes damage to sperm DNA, lipids, proteins and may 

trigger the mitochondrial pathway of apoptosis causing sperm demise. ROS, reactive oxygen 

species. 

 

 

 



 

FIG. 2. Overview of glycolysis. This process mainly occurs in spermatozoa under aerobic 

conditions, the main function being to provide pyruvate to feed the Krebs cycle, although 

ATP is also generated. Under high-glucose concentrations (diabetic conditions in humans, 

high glucose containing extenders in animal breeding), the excessive production of MG can 

induce severe sperm damage. MG, methylglyoxal. 



 

FIG. 3. In the glycolysis, phosphate is eliminated from the trioses phosphates glyceraldehyde 

3-phosphate and dihydroxyacetone phosphate; in this process, MG is produced; due to the 

adjacent carbonyl groups, MG is a strong electrophile that rapidly and spontaneously reacts 

with nucleophiles from proteins and DNA. MG is detoxified by the glyoxalase system to d-

lactate, with the participation of GSH. GSH, glutathione.  



 

FIG. 4. The SLC7A11 antiporter contributes to redox regulation in stallion spermatozoa 

through the exchange of extracellular Cyss for intracellular Glut. Cyss is intracellularly 

reduced to Cys, which is used for GSH synthesis. Alteration of the SLC7A11 antiporter (e.g., 

after cryopreservation) leads to reduced intracellular Cys, and then reduction in intracellular 

GSH. This causes redox deregulation and mitochondrial damage. The deregulation of redox 

homeostasis may lead to increase of LPO and the induction of ferroptosis. Alternatively 

intracellular glutamate may be metabolized following an alternative pathway. This 

alternative pathway produces reducing power to recycle GSSG to GSH, and maintain redox 

homeostasis and mitochondrial function. Cyss, cystine; Cys, cysteine; Glut, glutamate; GSSG, 

oxidized glutathione; LPO, lipoperoxides. 



 

FIG. 5. Proposed mechanism of the interaction between metabolism and redox regulation in 

the spermatozoa (122, 124, 180). Glutathione plays a major role in the regulation of sperm 

redox status, spermatozoa incorporate cystine through the SLC7A11 antiporter in exchange 

for intracellular glutamate, cystine is reduced to cysteine and used for GSH synthesis. 

Oxidized glutathione is recycled using reducing power, provided by NADPH. The PPP acts 

as the main source of NADPH, and itaconate acts as regulator of the glucose metabolism 

inhibiting glycolysis and diverting the glucose metabolism to the PPP. The NADPH 

cooperates with GSH synthesized from the cysteine incorporated through the SLCTA11 to 

regulate REDOX homeostasis and increase ATP synthesis in the ETC improving sperm 

functionality. ETC, electron transport chain; PPP, pentose phosphate pathway. 



 

FIG. 6. Summary of the interactions between the energetic metabolism and ROS in the 

spermatozoa. The main source of ROS in the spermatozoa is the mitochondrion, mainly the 

ETC at the complexes I and III. Other sources of ROS are the tricarboxylic acid cycle and the 

b-oxidation of fatty acids. Mitochondrial dysfunction increases the production of ROS. In 

addition, during the glycolysis MG and G are continuously produced; 2-oxoaldehydes due 

to their adjacent carbonyl groups are potent electrophiles that readily react with proteins, 

DNA, and fatty acids leading to the formation of AGEs. Glutathione plays amajor role in the 

detoxification of these products. High glucose can directly increase the production of 

mitochondrial ROS. AGEs, advanced glycation end products. 


