5,290 research outputs found

    Neurophysiological responses to stressful motion and anti-motion sickness drugs as mediated by the limbic system

    Get PDF
    Performance is characterized in terms of attention and memory, categorizing extrinsic mechanism mediated by ACTH, norepinephrine and dopamine, and intrinsic mechanisms as cholinergic. The cholinergic role in memory and performance was viewed from within the limbic system and related to volitional influences of frontal cortical afferents and behavioral responses of hypothalamic and reticular system efferents. The inhibitory influence of the hippocampus on the autonomic and hormonal responses mediated through the hypothalamus, pituitary, and brain stem are correlated with the actions of such anti-motion sickness drugs as scopolamine and amphetamine. These drugs appear to exert their effects on motion sickness symptomatology through diverse though synergistic neurochemical mechanisms involving the septohippocampal pathway and other limbic system structures. The particular impact of the limbic system on an animal's behavioral and hormonal responses to stress is influenced by ACTH, cortisol, scopolamine, and amphetamine

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    Estimation of Proportions of Objects and Determination of Training Sample-Size in a Remote Sensing Application

    Get PDF
    One of the problems in remote sensing is estimating the expected proportions of certain categories of objects which cannot be observed directly or distinctly. For example, a multi-channel scanning device may fail to observe objects because of obstructions blocking the view, or different categories of objects may make up a resolution element giving rise to a single observation. This will require ground truth on any such categories of objects for estimating their expected proportions associated with various classes represented in the remote sensing data. Considering the classes to be distributed as multivariate normal with different mean vectors and common covariance, we give the maximum likelihood estimates for the expected proportions of objects associated with different classes, using the Bayes procedure for classification of individuals obtained from these classes. An approximate solution for simultaneous confidence intervals on these proportions is given, and thereby a sample-size needed to achieve a desired amount of accuracy for the estimates has been determined

    Calibration of the AXAF Observatory: Overview

    Get PDF
    The Advanced X-ray Astrophysics Facility (AXAF) will soon begin its exploration of the x-ray universe, providing unprecedented angular and spectral resolution. Also unprecedented is the ambitious goal of calibrating the AXAF observatory to an accuracy of a few percent. Toward this end, AXAF science and engineering teams undertook an extensive calibration program at component, subsystem, and system levels. This paper is an overview of the system-level calibration activities, conducted over the past year at the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF)

    Calibration of the AXAF Observatory: Overview

    Get PDF
    The Advanced X-ray Astrophysics Facility (AXAF) will soon begin its exploration of the x-ray universe, providing unprecedented angular and spectral resolution. Also unprecedented is the ambitious goal of calibrating the AXAF observatory to an accuracy of a few percent. Toward this end, AXAF science and engineering teams undertook an extensive calibration program at component, subsystem, and system levels. This paper is an overview of the system-level calibration activities, conducted over the past year at the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF)

    Measuring X-Ray Polarization in the Presence of Systematic Effects

    Get PDF
    We describe a mathematical formalism for determining the 1 and 2 parameter errors in the magnitude and position angle of X ]ray polarization. The formalism includes a treatment of systematic effects, such as background and instrumental bias

    Advanced X-ray Astrophysics Facility (AXAF): An overview

    Get PDF
    The Advanced X-ray Astrophysics Facility (AXAF) is the x-ray component of NASA's Great Observatories. To be launched in late 1998, AXAF will provide unprecedented capabilities for high-resolution imaging, spectrometric imaging, and high-resolution disperse spectroscopy, over the x-ray band from about 0.1 keV to 10 keV. With these capabilities, AXAF observations will address many of the outstanding questions in astronomy, astrophysics, and cosmology

    The x ray reflectivity of the AXAF VETA-I optics

    Get PDF
    The x-ray reflectivity of the VETA-I optic, the outermost shell of the AXAF x-ray telescope, with a bare Zerodur surface, is measured and compared with theoretical predictions. Measurements made at energies of 0.28, 0.9, 1.5, 2.1, and 2.3 keV are compared with predictions based on ray trace calculations. The data were obtained at the x-ray calibrations facility at Marshall Space Flight Center with an electron impact x-ray source located 528 m from the grazing incidence mirror. The source used photoelectric absorption filters to eliminate bremsstrahlung continuum. The mirror has a diameter of 1.2 m and a focal length of 10 m. The incident and reflected x-ray flux are detected using two proportional counters, one located in the incident beam of x-rays at the entrance aperture of the VETA-I, and the other in the focal plane behind an aperture of variable size. Results on the variation of the reflectivity with energy as well as the absolute value of the reflectivity are presented. We also present a synchrotron reflectivity measurement with high energy resolution over the range 0.26 to 1.8 keV on a flat Zerodur sample, done at NSLS. We present evidence for contamination of the flat by a thin layer of carbon on the surface, and the possibility of alteration of the surface composition of the VETA-I mirror perhaps by the polishing technique. The overall agreement between the measured and calculated effective area of VETA-I is between 2.6 percent and 10 percent, depending on which model for the surface composition is adopted. Measurements at individual energies deviate from the best-fitting calculation to 0.3 to 0.8 percent, averaging 0.6 percent at energies below the high energy cutoff of the mirror reflectivity, and are as high as 20.7 percent at the cutoff. We also discuss the approach to the final preflight calibration of the full AXAF flight mirror

    The Age of Cluster Galaxies from Continuum Colors

    Get PDF
    We determine the age of 1,104 early-type galaxies in eight rich clusters (z=0.0046z = 0.0046 to 0.1750.175) using a new continuum color technique. We find that galaxies in clusters divide into two populations, an old population with a mean age similar to the age of the Universe (12 Gyrs) and a younger population with a mean age of 9 Gyrs. The older population follows the expected relations for mass and metallicity that imply a classic monolithic collapse origin. Although total galaxy metallicity is correlated with galaxy mass, it is uncorrelated with age. It is impossible, with the current data, to distinguish between a later epoch of star formation, longer duration of star formation or late bursts of star formation to explain the difference between the old and young populations. However, the global properties of this younger population are correlated with cluster environmental factors, which implies secondary processes, post-formation epoch, operate on the internal stellar population of a significant fraction of cluster galaxies. In addition, the mean age of the oldest galaxies in a cluster are correlated with cluster velocity dispersion implying that galaxy formation in massive clusters begins at earlier epochs than less massive clusters.Comment: 35 pages, 10 figures, accepted by Ap

    The CMS Event Builder

    Full text link
    The data acquisition system of the CMS experiment at the Large Hadron Collider will employ an event builder which will combine data from about 500 data sources into full events at an aggregate throughput of 100 GByte/s. Several architectures and switch technologies have been evaluated for the DAQ Technical Design Report by measurements with test benches and by simulation. This paper describes studies of an EVB test-bench based on 64 PCs acting as data sources and data consumers and employing both Gigabit Ethernet and Myrinet technologies as the interconnect. In the case of Ethernet, protocols based on Layer-2 frames and on TCP/IP are evaluated. Results from ongoing studies, including measurements on throughput and scaling are presented. The architecture of the baseline CMS event builder will be outlined. The event builder is organised into two stages with intelligent buffers in between. The first stage contains 64 switches performing a first level of data concentration by building super-fragments from fragments of 8 data sources. The second stage combines the 64 super-fragments into full events. This architecture allows installation of the second stage of the event builder in steps, with the overall throughput scaling linearly with the number of switches in the second stage. Possible implementations of the components of the event builder are discussed and the expected performance of the full event builder is outlined.Comment: Conference CHEP0
    corecore