13 research outputs found

    Development of a baseline-temperature correction methodology for electrochemical sensors and its implications for long-term stability

    Get PDF
    Recent studies have shown that (three-electrode) electrochemical sensors can be utilised for air quality monitoring and exposure assessment. The long-term performance of these sensors is however, often limited by the effects of ambient meteorological parameters on the sensor baseline, in particular temperature. If electrochemical (EC) sensors are to be adopted for air quality measurement over extended periods (months), this effect must be accounted for. Recent long-term, ambient measurements of CO, NO and NO2_2 using EC sensors have revealed that temperature (and relative humidity (RH)) had an effect on the baseline which was more pronounced in the case of NO sensors with coefficient of determination, R2R^2 of 0.9 when compared to CO and NO2_2 with R2R^2 < 0.2. In this paper we present a correction methodology that quantifies this effect (referred to here as fitted baseline), implementing these correction on the EC measurements. We found that EC sensors corrected for baseline-temperature effect using the method describe in this paper show good agreement when compared with traditional reference instrument. The coefficient of determination R2R^2 of 0.7-0.8 and gradient of 0.9 was observed for baseline-temperature corrected NO compared to R2R^2 = 0.02 prior to baseline-temperature correction. Furthermore, the correction methodology was validated by comparing the temperature-baseline with proxy temperature compensating measurements obtained from the fourth electrode of a set of novel four-electrode electrochemical sensors. A good agreement (R2^2 = 0.9, with gradients = 0.7-1.08 for NO and 0.5 < R2^2 < 0.73 for CO) was observed between temperature fitted baselines and outputs from the fourth electrodes (also known non-sensing/auxiliary electrode). Meanwhile, the long-term stability (calibrated signal output) of temperature-corrected data was evaluated by comparing the change in sensor gain to meteorological parameters including temperature, relative humidity, wind speed and wind direction. The results showed that there was no statistically significant change in sensitivity (two-sided tt-test, p = 0.34) of the temperature-corrected electrochemical sensor with respect to these parameters (over several months). This work demonstrates that using the baseline-temperature correction methodology described in this paper, electrochemical sensors can be used for long-term (months), quantitative measurements of air quality gases at the parts per billion volume (ppb) mixing ratio level typical of ambient conditions in the urban environment.The authors would like to thank Cambridge Commonwealth Trust & Cambridge Overseas Trust and Dorothy Hodgkin Studentship for the PhD studentship awarded to Olalekan Popoola. We will like to thank NERC for funding the SNAQ Heathrow project as well as DfT and EPSRC for funding the MESSAGE project

    Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors

    Get PDF
    To carry out detailed source attribution for air quality assessment it is necessary to distinguish pollutant contributions that arise from local emissions from those attributable to non-local or regional emission sources. Frequently this requires the use of complex models and inversion methods, prior knowledge or assumptions regarding the pollution environment. In this paper we demonstrate how high spatial density and fast response measurements from low-cost sensor networks may facilitate this separation. A purely measurement-based approach to extract underlying pollution levels (baselines) from the measurements is presented exploiting the different relative frequencies of local and background pollution variations. This paper shows that if high spatial and temporal coverage of air quality measurements are available, the different contributions to the total pollution levels, namely the regional signal as well as near and far field local sources, can be quantified. The advantage of using high spatial resolution observations, as can be provided by low-cost sensor networks, lies in the fact that no prior assumptions about pollution levels at individual deployment sites are required. The methodology we present here, utilising measurements of carbon monoxide (CO), has wide applicability, including additional gas phase species and measurements obtained using reference networks. While similar studies have been performed, this is the first study using networks at this density, or using low cost sensor networks.The authors thank EPSRC (EP/E001912/1) for funding for the Message project. IH thanks the German National Academic Foundation for funding of MPhil degree.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S1352231015300583#

    The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks

    Get PDF
    Measurements at appropriate spatial and temporal scales are essential for understanding and monitoring spatially heterogeneous environments with complex and highly variable emission sources, such as in urban areas. However, the costs and complexity of conventional air quality measurement methods means that measurement networks are generally extremely sparse. In this paper we show that miniature, low-cost electrochemical gas sensors, traditionally used for sensing at parts-per-million (ppm) mixing ratios can, when suitably configured and operated, be used for parts-per-billion (ppb) level studies for gases relevant to urban air quality. Sensor nodes, in this case consisting of multiple individual electrochemical sensors, can be low-cost and highly portable, thus allowing the deployment of scalable high-density air quality sensor networks at fine spatial and temporal scales, and in both static and mobile configurations.This work was supported by EPSRC (grant number EP/E002102/1) and the Department for Transport

    Ureterocele: Self-resolved follow spontaneous extrusion of calculus

    No full text
    No Abstrac

    Use of networks of low cost air quality sensors to quantify air quality in urban settings

    Get PDF
    Low cost sensors are becoming increasingly available for studying urban air quality. Here we show how such sensors, deployed as a network, provide unprecedented insights into the patterns of pollutant emissions, in this case at London Heathrow Airport (LHR). Measurements from the sensor network were used to unequivocally distinguish airport emissions from long range transport, and then to infer emission indices from the various airport activities. These were used to constrain an air quality model (ADMS-Airport), creating a powerful predictive tool for modelling pollutant concentrations. For nitrogen dioxide (NO2), the results show that the non-airport component is the dominant fraction (~75%) of annual NO2 around the airport and that despite a predicted increase in airport related NO2 with an additional runway, improvements in road traffic fleet emissions are likely to more than offset this increase. This work focusses on London Heathrow Airport, but the sensor network approach we demonstrate has general applicability for a wide range of environmental monitoring studies and air pollution interventions
    corecore