1,080 research outputs found

    Cognitive Behavioural Therapy versus Education of adult patients with chronic pain. A meta-analysis of the change of pain intensity post-intervention and after 6 months

    Get PDF
    Background: Sessions of Pain Management Programme in which an element of education of patients is involved are similar in structure to cognitive behaviour therapy (CBT) sessions. The key principles of education sessions primarily begin with establishing good rapport and explaining the rationale for therapy (Thorn et al. 2011). Systematic reviews comparing CBT with other treatments concluded that CBT is superior only to treatment as usual or waiting list in improving pain (Eccleston et al 2012). On the other hand Geneen et al (2015) concluded in a systematic review they couldnā€™t confidently conclude that education alone is effective in reducing pain intensity or related disability in chronic pain in adults. We have decided to review the literature for studies that compared CBT against Education head to head and evaluate the evidence. Aims: To compare the effectiveness of CBT versus Education of patients (Edu) regardless of its delivery method in reducing pain intensity just after the intervention and at 6 months follow up. Methods: Randomised Controlled Trials (RCTs) studies, including 20 or more participants in CBT and Edu arms for the management non-malignant chronic pain of adult patients (18- 65 years of age) were searched in PubMed, Cochrane, Science direct. Data on improvement of pain (measured as pain intensity using a numerical rating scale from 0-10 with 10 is the most severe pain, immediately post intervention and at after 6 months follow up) were extracted from the relevant studies. A meta-analysis approach was followed to estimate the total effect size of the difference between the two interventions in improving pain. Results: Out of initial eligible 5 studies that compared CBT against Education in the same sample of patients at the same time only 3 was qualified for this meta-analysis. These were Turner et al (2006) (n=72 CBT, 76 Edu), Thorn et al. (2011) (n=49 CBT, 34 Edu) and Carmody et al. (2013) (n=48 CBT, 50 Edu). All studies reported that patients were randomised to either CBT or Edu and pain intensity was similar between the two intervention groups at baseline (P>0.1). The overall effect size of the mean difference between CBT and Edu groupsā€™ pain intensity suggested that there is no differences between the two interventions post-intervention (z=.044, P=0.66) or at 6 months follow up (z=-1.126, P=0.26). There was an intermediate level of heterogeneity (Q=4.22, P=0.12, I squared=52.60) but no publication bias among these three studies was identified. Conclusion: CBT and Education programmes of chronic pain management resulted in the same level of pain intensity reduction post-intervention and after 6 months follow up. The two interventions only slightly reduced the pain intensity score in the 3 samples studied which was statistically significant in one study only

    Important paradigms of the thermoelastic waves

    Get PDF
    This paper is devoted to the investigation of the propagation of magneto-thermo-elastic waves in a rotating monoclinic system. The system is electrically conducting in the presence of an applied magnetic ļ¬eld. A general dispersion relation is obtained for magneto-thermo-elastic waves. The propagation of wave produced two elastic waves and two thermal waves. It is found that the elastic waves depend on the applied magnetic ļ¬eld and the rotational frequency, where the thermal waves are independent of these eļ¬€ects. The numerical simulations are presented in this article to support the ļ¬ndings

    Magneto-nanofluid flow with heat transfer past a stretching surface for the new heat flux model using numerical approach

    Get PDF
    Sheet processing of magnetic nanomaterials is emerging as a new branch of smart materials manufacturing. The efficient production of such materials combines many physical phenomena including magnetohydrodynamics (MHD), nanoscale, thermal and mass diffusion effects. To improve understanding of complex inter-disciplinary transport phenomena in such systems, mathematical models provide a robust approach. Motivated by this, herein we develop a mathematical model for steady, laminar, magnetohydrodynamic, incompressible nanofluid flow, heat and mass transfer from a stretching sheet. A uniform constant strength magnetic field is applied transverse to the plane of the stretching flow. The Buonjiornio nanofluid model is employed to represent thermophoretic and Brownian motion effects. A non-Fourier (Cattaneo-Christov) model is deployed to simulate thermal conduction effects of which the Fourier model is a special case when thermal relaxation effects are neglected. The governing conservation equations are rendered dimensionless with suitable scaling transformations. The emerging nonlinear boundary value problem is solved with a fourth order Runge-Kutta algorithm and also shooting quadrature. Validation is achieved with earlier non-magnetic and forced convection flow studies. The influence of key thermophysical parameters e.g. Hartmann magnetic number, thermal Grashof number, thermal relaxation time parameter, Schmidt number, thermophoresis parameter, Prandtl number and Brownian motion number on velocity, skin friction, temperature, Nusselt number, Sherwood number and nano-particle concentration distributions is investigated. A strong elevation in temperature accompanies an increase in Brownian motion parameter whereas increasing magnetic parameter is found to reduce heat transfer rate at the wall (Nusselt number). Nano-particle volume fraction is observed to be strongly suppressed with greater thermal Grashof number, Schmidt number and thermophoresis parameter whereas it is elevated significantly with greater Brownian motion parameter. Higher temperatures are achieved with greater thermal relaxation time values i.e. the non-Fourier model predicts greater values for temperature than the classical Fourier model

    Peristaltic transport of bi-viscosity fluids through a curved tube : a mathematical model for intestinal flow

    Get PDF
    The human intestinal tract is a long curved tube constituting the final section of the digestive system in which nutrients and water are mostly absorbed. Motivated by the dynamics of chyme in the intestine, a mathematical model is developed to simulate the associated transport phenomena via peristaltic transport. Rheology of chyme is modelled using the Nakamura-Sawada bi-viscosity non-Newtonian formulation. The intestinal tract is considered as a curved tube geometric model. Low Reynolds number (creeping hydrodynamics) and long wavelength approximations are taken into consideration.Analytical solutions of the moving boundary value problem are derived for velocity field,pressure gradient and pressure rise. Streamline flow visualization is achieved with Mathematica symbolic software. Peristaltic pumping phenomenon and trapping of the bolus are also examined. The influence of curvature parameter, apparent viscosity coefficient (rheological parameter) and volumetric flow rate on flow characteristics is described. Validation of analytical solutions is achieved with a MAPLE17 numerical quadrature algorithm. The work is relevant to improving understanding of gastric hydrodynamics and provides a benchmark for further computational fluid dynamics (CFD) simulations

    Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia

    Get PDF
    In this paper, we present an analytical study of pressure-driven flow of micropolar non-Newtonian physiological fluids through a channel comprising two parallel oscillating walls. The cilia are arranged at equal intervals and protrude normally from both walls of the infinitely long channel. A metachronal wave is generated due to natural beating of cilia and the direction of wave propagation is parallel to the direction of fluid flow. Appropriate expressions are presented for deformation via longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The conservation equations for mass, longitudinal and transverse (linear) momentum and angular momentum are reduced in accordance with the long wavelength and creeping Stokesian flow approximations and then normalized with appropriate transformations. The resulting non-linear moving boundary value problem is solved analytically for constant micro-inertia density, subject to physically realistic boundary conditions. Closed-form expressions are derived for axial velocity, angular velocity, volumetric flow rate and pressure rise. The transport phenomena are shown to be dictated by several non-Newtonian parameters, including micropolar material parameter and Eringen coupling parameter, and also several geometric parameters, viz eccentricity parameter, wave number and cilia length. The influence of these parameters on streamline profiles (with a view to addressing trapping features via bolus formation and evolution), pressure gradient and other characteristics are evaluated graphically. Both axial and angular velocities are observed to be substantially modified with both micropolar rheological parameters and furthermore are significantly altered with increasing volumetric flow rate. Free pumping is also examined. An inverse relationship between pressure rise and flow rate is computed which is similar to that observed in Newtonian fluids. The study is relevant to hemodynamics in narrow capillaries and also bio-inspired micro-fluidic devices

    Mathematical model for ciliary-induced transport in MHD flow of Cu-H2O nanoƟuids with magnetic induction

    Get PDF
    Motivated by novel developments in surface-modified, nanoscale, magnetohydrodynamic (MHD) biomedical devices, we study theoretically the ciliary induced transport by metachronal wave propagation in hydromagnetic flow of copper-water nanofluids through a parallel plate channel. Under the physiological constraints, creeping flow is taken into consideration i.e. inertial forces are small compared with viscous forces. The metachronal wavelength is also considered as very large for cilia induced MHD flow. Magnetic Reynolds number is sufficiently large to invoke magnetic induction effects. The physical problem is linearized and exact solutions are developed for the resulting boundary value problem. Closed-form expressions are presented for the stream function, pressure rise, induced magnetic field function and temperature. Mathematica symbolic software is used to compute and illustrate numerical results. The influence of physical parameters on velocity profile, pressure gradient and trapping of bolus are discussed with the aid of graphs. The present computations are applicable to simulations of flow control of in nano-magneto-biomimetic technologies

    Non-similar solution of g-jitter induced unsteady magnetohydrodynamic radiative slip flow of nanofluid

    Get PDF
    We present a mathematical model and numerical simulation of the unsteady 2-D g-jitter-free and forced convective flow of water-based nanofluid from a flat plate, considering both the velocity slip and thermal slip conditions imposed on the wall of the plate. The Darcian model is used, and both cases of a calm and moving free stream are considered. In place of the extensively used linearly varying radiative heat flux, the nonlinearly varying heat flux calculation is applied to produce practically useful results. Further, we incorporate the ā€œzero mass flux boundary conditionā€ which is believed to be more realistic than the earlier extensively used ā€œactivelyā€ controlled model. The parameter influences on the non-dimensional velocity, temperature, nanoparticle volume fraction, skin friction and heat transfer rates are visualized graphically and discussed in detail. Special cases of the results are benchmarked with those existing in the literature, and a good arrangement is obtained. It is found that the rate of heat transfer is lower for the calm free stream rather than the moving free stream

    Simulation of natural convection heat transfer in a 2-D trapezoidal enclosure

    Get PDF
    Natural convection within trapezoidal enclosures finds significant practical applications. The natural convection flows play a prominent role in the transport of energy in energy-related applications, in case of proper design enclosures to achieve higher heat transfer rates. In the present study, a two-dimensional cavity with adiabatic right side wall is studied. The left side vertical wall is maintained at the constant hot temperature and the top slat wall is maintained at cold temperature. The dimensionless governing partial differential equations for vorticity-stream function are solved using the finite difference method with incremental time steps. The parametric study involves a wide range of Rayleigh number, Ra, 10(3)<ra<10(5) and Prandtl number (Pr=0.025, 0.71 and 10). The fluid flow within the enclosure is formed with different shapes for different Pr values. The flow rate is increased by enhancing the Rayleigh number (Ra=10(4)). The numerical results are validated with previous results. The governing parameters in the present article, namely Rayleigh number and Prandtl number on flow patterns, isotherms as well as local Nusselt number are reported

    Phenotype and genotype of 197 British patients with McArdle disease: An observational single-centre study

    Get PDF
    McArdle disease is caused by recessive mutations in PYGM gene. The condition is considered to cause a ā€œpureā€ muscle phenotype with symptoms including exercise intolerance, inability to perform isometric activities, contracture, and acute rhabdomyolysis leading to acute renal failure. This is a retrospective observational study aiming to describe phenotypic and genotypic features of a large cohort of patients with McArdle disease between 2011 and 2019. Data relating to genotype and phenotype, including frequency of rhabdomyolysis, fixed muscle weakness, gout and comorbidities, inclusive of retinal disease (pattern retinal dystrophy) and thyroid disease, were collected. Data from 197 patients are presented. Seven previously unpublished PYGM mutations are described. Exercise intolerance (100%) and episodic rhabdomyolysis (75.6%) were the most common symptoms. Fixed muscle weakness was present in 82 (41.6%) subjects. Unexpectedly, ptosis was observed in 28 patients (14.2%). Hyperuricaemia was a common finding present in 88 subjects (44.7%), complicated by gout in 25% of cases. Thyroid dysfunction was described in 30 subjects (15.2%), and in 3 cases, papillary thyroid cancer was observed. Pattern retinal dystrophy was detected in 15 out of the 41 subjects that underwent an ophthalmic assessment (36.6%). In addition to fixed muscle weakness, ptosis was a relatively common finding. Surprisingly, dysfunction of thyroid and retinal abnormalities were relatively frequent comorbidities. Further studies are needed to better clarify this association, although our finding may have important implication for patient management

    A controlled trial of natalizumab for relapsing multiple sclerosis.

    Get PDF
    Background: In patients with multiple sclerosis, inflammatory brain lesions appear to arise from autoimmune responses involving activated lymphocytes and monocytes. The glycoprotein (alpha)(sub 4) integrin is expressed on the surface of these cells and plays a critical part in their adhesion to the vascular endothelium and migration into the parenchyma. Natalizumab is an (alpha)(sub 4) integrin antagonist that reduced the development of brain lesions in experimental models and in a preliminary study of patients with multiple sclerosis.Methods: In a randomized, double-blind trial, we randomly assigned a total of 213 patients with relapsing-remitting or relapsing secondary progressive multiple sclerosis to receive 3 mg of intravenous natalizumab per kilogram of body weight (68 patients), 6 mg per kilogram (74 patients), or placebo (71 patients) every 28 days for 6 months. The primary end point was the number of new brain lesions on monthly gadolinium-enhanced magnetic resonance imaging during the six-month treatment period. Clinical outcomes included relapses and self-reported well-being.Results: There were marked reductions in the mean number of new lesions in both natalizumab groups: 9.6 per patient in the placebo group, as compared with 0.7 in the group given 3 mg of natalizumab per kilogram (P<0.001) and 1.1 in the group given 6 mg of natalizumab per kilogram (P<0.001). Twenty-seven patients in the placebo group had relapses, as compared with 13 in the group given 3 mg of natalizumab per kilogram (P=0.02) and 14 in the group given 6 mg of natalizumab per kilogram (P=0.02). The placebo group reported a slight worsening in well-being (a mean decrease of 1.38 mm on a 100-mm visual-analogue scale), whereas the natalizumab groups reported an improvement (mean increase of 9.49 mm in the group given 3 mg of natalizumab per kilogram and 6.21 mm in the group given 6 mg of natalizumab per kilogram).Conclusions: In a placebo-controlled trial, treatment with natalizumab led to fewer inflammatory brain lesions and fewer relapses over a six-month period in patients with relapsing multiple sclerosis
    • ā€¦
    corecore