11 research outputs found

    The Effects of Land Configuration and Wood-Shavings Mulch on the Properties of a Sandy Loam Soil in Northeast Nigeria. 2. Changes in Physical Properties

    Get PDF
    Mulching and ridge tillage are proven technologies for improving soil productivity in semi-arid regions. Yet data quantifying the combined influences of these practices are limited. Our objectives were to determine the changes in selected physical properties of a sandy loam after 4-years of annual tillage and wood-shavings mulching. The tillage and wood-shavings treatments consisted of: Flat bed (FB), Open ridge (OR), Tiedridge (TR), FBM, ORM and TRM were same as FB, OR and TR, respectively except that wood-shavings at a rate of 10 t/ha were surface applied ≈ 2 weeks after sowing each year to serve as both a mulch and an organic amendment. At the end of the trial in 2002, bulk density, penetration resistance, total porosity and soil water content from each of 0-0.075, 0.075-0.15 and 0.15-0.30 m depths were determined. Composite samples from the surface (0.075 and 0.075-0.15 m) layers from 3 replicates of each treatment were also collected for the determination of wet aggregate stability and from 0-0.15 m and 0.15-0.30 m layers for determination of saturated hydraulic conductivity (Ksat). After 4 years of annual tillage and addition of woodshavings, soil bulk density and penetration resistance were consistently lower and total porosity higher in the FBM, ORM and TRM treatments than in the FB, OR and TR treatments. Penetration resistance in all treatments was strongly related to soil water content. A 'hoe pan' was established below 0.15 m depth beneath the furrows of the ridged treatments. This could be attributed to human traffic during field operations and ponding of water, which occurred in the furrows following heavy rains. Wet aggregate stability estimated as the proportion of aggregates of size > 0.25 mm (macro-aggregates) in the 0-0.15 m layer were significantly (P< 0.05) higher under FBM, ORM and TRM than under FB, OR or TR treatments. Ksat was not influenced by either tillage or wood-shavings treatments but were higher for the mulched plots than for the bare treatments in both soil layers

    The Effects of Land Configuration and Wood-Shavings Mulch on the Properties of a Sandy Loam Soil in Northeast Nigeria. 1. Changes in Chemical Properties

    No full text
    In the savanna region of Nigeria, the search continues for practices that will improve the productivity of the fragile soils characterized by low organic matter and plant nutrients, poor structure and very high permeability. A 4-year (1999-2002) field experiment was conducted to determine the effects of land configuration and wood-shavings mulch on soil chemical properties under rainfed sorghum. The treatments were Flat Bed (FB as control), Open-ridge (OR), Tied-ridge (TR,) Flat bed with wood-shavings mulch (FBM), Open-ridge with wood-shaving mulch (ORM) and Tied-ridge with wood-shavings mulch (TRM). Wood-shavings at the rate of 5 t/ha were used in 1999 but the rate was increased to 10 t/ha during subsequent years to ensure adequate soil coverage. Soil samples from 0.075 m depth were obtained at the end of the third (2001) and fourth (2002) cropping seasons and analysed for pH, organic carbon (OC), total nitrogen (TN), available P (AP), exchangeable acidity, exchangeable K+, Ca++ Mg++ and Na+. The results indicate that over the 4-year study period, the topsoil in all the treatments acidified but the rate of acidification was much faster in bare treatments (FB, OR and TR) than in the mulched treatments (FBM, ORM and TRM), irrespective of tillage methods. In 2002; OC, TN and AP in the top 0-0.075 m layer of the wood-shavings amended soil were 24-29, 15-23 and 92-112% higher, respectively, than in the unamended control. OC in this soil layer correlated with TN (r= 0.98**) and AP (r= 0.97**). Similarly, the three bare treatments experienced a rapid loss in exchangeable K+, Ca++ Mg++ and Na+ between 1999 and 2002 but the reduction was much greater in OR and TR treatments compared to the FB treatment. FBM, ORM and TRM treatments significantly improved the topsoil fertility with respect to exchangeable K+, Ca++ and Mg++ content. This was attributed to the release of these exchangeable cations from the decomposing organic mulch. These results demonstrate the potential of combining ridge tillage with residue mulch in improving the fertility status of the coarse textured soils in the savanna region of northeast Nigeria

    Improving water use efficiency of vineyards in semi-arid regions. A review

    No full text
    Water is critical for viticulture sustainability since grape production, quality and economic viability are largely dependent on water availability. The total water consumption of vineyards, 300 to 700 mm, is generally higher than the annual average precipitation in many viticultural areas, which induces a risk for sustainability of vineyards. Improving vineyard water use efficiency (WUE) is therefore crucial for a sustainable viticulture industry in semi-arid regions. Increased sustainability of water resources for vineyards can be achieved using both agronomical technology and cultivar selection. Here, we review advances in grapevine water use efficiency related to changes in agronomical practices and genetic improvements. Agronomical practices focus on increasing green water use by increasing soil water storage capacity, reducing direct soil water loss, or limiting early transpiration losses. Cover crops for semi-arid areas show a favorable effect, but careful management is needed to avoid excessive water consumption by the cover crop. Canopy management practices to reduce excessive water use are also analyzed. This is a genetic based review focused on identifying cultivars with higher WUE

    Improving water use efficiency of vineyards in semi-arid regions. A review

    No full text
    corecore