5 research outputs found

    Generation of flavors and fragrances through biotransformation and de novo synthesis

    Get PDF
    Flavors and fragrances are the result of the presence of volatile and non-volatile compounds, appreciated mostly by the sense of smell once they usually have pleasant odors. They are used in perfumes and perfumed products, as well as for the flavoring of foods and beverages. In fact the ability of the microorganisms to produce flavors and fragrances has been described for a long time, but the relationship between the flavor formation and the microbial growth was only recently established. After that, efforts have been put in the analysis and optimization of food fermentations that led to the investigation of microorganisms and their capacity to produce flavors and fragrances, either by de novo synthesis or biotransformation. In this review, we aim to resume the recent achievements in the production of the most relevant flavors by bioconversion/biotransformation or de novo synthesis, its market value, prominent strains used, and their production rates/maximum concentrations.We would like to thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469 unit, COMPETE 2020 (POCI-01-0145FEDER-006684), and BiotecNorte operation (NORTE-01-0145FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Effects of ultraviolet radiation on the abundance, diversity and activity of bacterioneuston and bacterioplankton: insights from microcosm studies

    No full text
    The effects of ultraviolet-B (0.4 W m-2) radiation on the abundance, diversity and heterotrophic metabolism of bacterioneuston and bacterioplankton communities from Ria de Aveiro (Portugal) were assessed and compared to those of freshwater communities from Lake Vela (Portugal) in microcosm experiments. Exposure to 9 h of artificial ultraviolet radiation (UVR) led to 24–33% reduction in bacterial abundance and up to a 70% decrease in bacterial diversity. Maximum extracellular enzyme activity and monomer incorporation rates were reduced by 16–90% and 80–100%, respectively. Recovery of bacterial activity during post-UV dark incubations ranged from 10 to 100% for extracellular enzyme activity and 40% for monomer incorporation rates. In general, the heterotrophic activity of bacterioneuston was more inhibited by UVR than that of bacterioplankton. However, DGGE profiles revealed greater UVR-induced reductions in the diversity of bacterioplankton compared to bacterioneuston. The similarity between bacterioneuston and bacterioplankton communities in samples collected at early morning was lower than at noon (pre-exposed communities) and increased upon experimental irradiation, possibly indicating selection for UV-resistant bacteria. The observation that UV exposure resulted in enhanced reduction of bacterioneuston activity, but a lower reduction in bacterial diversity accompanied by enhanced dark recovery potential compared to bacterioplankton, indicates re-directioning of bacterioneuston metabolism towards stress defence/recovery strategies rather than the sustained heterotrophic metabolism. Our results indicate that UVR can significantly decrease the abundance, diversity and activity of bacteria inhabiting the surface and sub-surface layers of freshwater and estuarine systems with potentially important impacts on the biogeochemical cycles in these environments

    Subtypes of familial breast tumours revealed by expression and copy number profiling

    No full text
    Extensive expression profiling studies have shown that sporadic breast cancer is composed of five clinically relevant molecular subtypes. However, although BRCA1-related tumours are known to be predominantly basal-like, there are few published data on other classes of familial breast tumours. We analysed a cohort of 75 BRCA1, BRCA2 and non-BRCA1/2 breast tumours by gene expression profiling and found that 74% BRCA1 tumours were basal-like, 73% of BRCA2 tumours were luminal A or B, and 52% non-BRCA1/2 tumours were luminal A. Thirty-four tumours were also analysed by single nucleotide polymorphism-comparative genomic hybridization (SNP-CGH) arrays. Copy number data could predict whether a tumour was basal-like or luminal with high accuracy, but could not predict its mutation class. Basal-like BRCA1 and basal-like non-BRCA1 tumours were very similar, and contained the highest number of chromosome aberrations. We identified regions of frequent gain containing potential driver genes in the basal (8q and 12p) and luminal A tumours (1q and 17q). Regions of homozygous loss associated with decreased expression of potential tumour suppressor genes were also detected, including in basal tumours (5q and 9p), and basal and luminal tumours (10q). This study highlights the heterogeneity of familial tumours and the clinical consequences for treatment and prognosis
    corecore