18 research outputs found

    Leech blood-meal invertebrate-derived DNA reveals differences in Bornean mammal diversity across habitats

    Get PDF
    The application of metabarcoding to environmental and invertebrate-derived DNA (eDNA and iDNA) is a new and increasingly applied method for monitoring biodiversity across a diverse range of habitats. This approach is particularly promising for sampling in the biodiverse humid tropics, where rapid land-use change for agriculture means there is a growing need to understand the conservation value of the remaining mosaic and degraded landscapes. Here we use iDNA from blood-feeding leeches (Haemadipsa picta) to assess differences in mammalian diversity across a gradient of forest degradation in Sabah, Malaysian Borneo. We screened 557 individual leeches for mammal DNA by targeting fragments of the 16S rRNA gene and detected 14 mammalian genera. We recorded lower mammal diversity in the most heavily degraded forest compared to higher quality twice logged forest. Although the accumulation curves of diversity estimates were comparable across these habitat types, diversity was higher in twice logged forest, with more taxa of conservation concern. In addition, our analysis revealed differences between the community recorded in the heavily logged forest and that of the twice logged forest. By revealing differences in mammal diversity across a human-modified tropical landscape, our study demonstrates the value of iDNA as a noninvasive biomonitoring approach in conservation assessments. © 2020 The Authors. Molecular Ecology published by John Wiley & Sons Lt

    Population, Land Use and Deforestation in the Pan Amazon Basin: a Comparison of Brazil, Bolivia, Colombia, Ecuador, PerĂş and Venezuela

    Full text link
    This paper discusses the linkages between population change, land use, and deforestation in the Amazon regions of Brazil, Bolivia, Colombia, Ecuador, Perú, and Venezuela. We begin with a brief discussion of theories of population–environment linkages, and then focus on the case of deforestation in the PanAmazon. The core of the paper reviews available data on deforestation, population growth, migration and land use in order to see how well land cover change reflects demographic and agricultural change. The data indicate that population dynamics and net migration exhibit to deforestation in some states of the basin but not others. We then discuss other explanatory factors for deforestation, and find a close correspondence between land use and deforestation, which suggests that land use is loosely tied to demographic dynamics and mediates the influence of population on deforestation. We also consider national political economic contexts of Amazon change in the six countries, and find contrasting contexts, which also helps to explain the limited demographic-deforestation correspondence. The paper closes by noting general conclusions based on the data, topics in need of further research and recent policy proposals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42720/1/10668_2003_Article_6977.pd

    The role of pasture and soybean in deforestation of the Brazilian amazon

    No full text
    The dynamics of deforestation in the Brazilian Amazon are complex. A growing debate considers the extent to which deforestation is a result of the expansion of the Brazilian soy industry. Most recent analyses suggest that deforestation is driven by the expansion of cattle ranching, rather than soy. Soy seems to be replacing previously deforested land and/or land previously under pasture. In this study, we use municipality-level statistics on agricultural and deforested areas across the Legal Amazon from 2000 to 2006 to examine the spatial patterns and statistical relationships between deforestation and changes in pasture and soybean areas. Our results support previous studies that showed that deforestation is predominantly a result of pasture expansion. However, we also find support for the hypothesis that an increase of soy in Mato Grosso has displaced pasture further north, leading to deforestation elsewhere. Although not conclusive, our findings suggest that the debate surrounding the drivers of Amazon deforestation is not over, and that indirect causal links between soy and deforestation may exist that need further exploration. Future research should examine more closely how interlinkages between land area, prices, and policies influence the relationship between soy and deforestation, in order to make a conclusive case for 'displacement deforestation'

    Forest transitions: towards a global understanding of land use change

    No full text
    Places experience forest transitions when declines in forest cover cease and recoveries in forest cover begin. Forest transitions have occurred in two, sometimes overlapping circumstances. In some places economic development has created enough non-farm jobs to pull farmers off of the land, thereby inducing the spontaneous regeneration of forests in old fields. In other places a scarcity of forest products has prompted governments and landowners to plant trees in some fields. The transitions do little to conserve biodiversity, but they do sequester carbon and conserve soil, so governments should place a high priority on promoting them

    The causes of land-use and land-cover change: moving beyond the myths

    No full text
    Common understanding of the causes of land-use and land-cover change is dominated by simplifications which, in turn, underlie many environment-development policies. This article tracks some of the major myths on driving forces of land-cover change and proposes alternative pathways of change that are better supported by case study evidence. Cases reviewed support the conclusion that neither population nor poverty alone constitute the sole and major underlying causes of land-cover change worldwide. Rather, peoples' responses to economic opportunities, as mediated by institutional factors, drive land-cover changes. Opportunities and constraints for new land uses are created by local as well as national markets and policies. Global forces become the main determinants of land-use change, as they amplify or attenuate local factors

    Seed exchange networks for agrobiodiversity conservation. A review

    No full text
    The circulation of seed among farmers is central to agrobiodiversity conservation and dynamics. Agrobiodiversity, the diversity of agricultural systems from genes to varieties and crop species, from farming methods to landscape composition, is part of humanity�s cultural heritage. Whereas agrobiodiversity conservation has received much attention from researchers and policy makers over the last decades, the methods available to study the role of seed exchange networks in preserving crop biodiversity have only recently begun to be considered. In this overview, we present key concepts, methods, and challenges to better understand seed exchange networks so as to improve the chances that traditional crop varieties (landraces) will be preserved and used sustainably around the world. The available literature suggests that there is insufficient knowledge about the social, cultural, and methodological dimensions of environmental change, including how seed exchange networks will cope with changes in climates, socio-economic factors, and family structures that have supported seed exchange systems to date. Methods available to study the role of seed exchange networks in the preservation and adaptation of crop specific and genetic diversity range from meta-analysis to modelling, from participatory approaches to the development of bio-indicators, from genetic to biogeographical studies, from anthropological and ethnographic research to the use of network theory. We advocate a diversity of approaches, so as to foster the creation of robust and policy-relevant knowledge. Open challenges in the study of the role of seed exchange networks in biodiversity conservation include the development of methods to (i) enhance farmers� participation to decision-making in agro-ecosystems, (ii) integrate ex situ and in situ approaches, (iii) achieve interdisciplinary research collaboration between social and natural scientists, and (iv) use network analysis as a conceptual framework to bridge boundaries among researchers, farmers and policy makers, as well as other stakeholders

    A Research Agenda for Microclimate Ecology in Human-Modified Tropical Forests

    Get PDF
    Logging and habitat fragmentation impact tropical forest ecosystems in numerous ways, perhaps the most striking of which is by altering the temperature, humidity, and light environment of the forest—its microclimate. Because local-scale microclimatic conditions directly influence the physiology, demography and behavior of most species, many of the impacts of land-use intensification on the biodiversity and ecosystem functioning of tropical forests have been attributed to changes in microclimate. However, the actual pathways through which altered microclimatic conditions reshape the ecology of these human-modified ecosystems remain largely unexplored. To bridge this knowledge gap, here we outline an agenda for future microclimate research in human-modified tropical ecosystems. We focus specifically on three main themes: the role of microclimate in shaping (i) species distributions, (ii) species interactions, and (iii) ecosystem functioning in tropical forests. In doing so we aim to highlight how a renewed focus on microclimate can help us not only better understand the ecology of human-modified tropical ecosystems, but also guide efforts to manage and protect them
    corecore