5 research outputs found
The Klein-Gordon equation with the Kratzer potential in d dimensions
We apply the Asymptotic Iteration Method to obtain the bound-state energy
spectrum for the d-dimensional Klein-Gordon equation with scalar S(r) and
vector potentials V(r). When S(r) and V(r) are both Coulombic, we obtain all
the exact solutions; when the potentials are both of Kratzer type, we obtain
all the exact solutions for S(r)=V(r); if S(r) > V(r) we obtain exact solutions
under certain constraints on the potential parameters: in this case, a possible
general solution is found in terms of a monic polynomial, whose coefficients
form a set of elementary symmetric polynomials.Comment: 13 page
Macroscopic polar optical lattice vibrations and electron-phonon interaction in layered semiconductor structures
SIGLEAvailable from British Library Document Supply Centre- DSC:DX179671 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
DFT and molecular docking study of the effect of a green solvent (water and DMSO) on the structure, MEP, and FMOs of the 1-ethylpiperazine-1,4-diium bis(hydrogenoxalate) compound
International audienceWe report in this study the influence of green solvents (water and DMSO) effect in structural parameters, frontier molecular orbital's (FMO's) and molecular electrostatic potential surface analysis (MEPS) of 1-ethylpiperazine-1,4-diium bis(hydrogenoxalate) (1EPBH) compound by means of DFT method. The compound has been examined by signal-crystal X-ray diffraction (XRD), infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy. The theoretical calculations were carried out by density functional theory (DFT) method by using B3LYP/6-311++G(d,p) as the basis set. The Atom Centered Density Matrix propagation (ADMP) dynamic approach has been used. Based on the density functional theory calculation, a series of studies have been carried out to determine the noncovalent interactions in the 1EPBH compound. The types and strengths of interactions between hydrogen bonds have been established using the atoms in molecule method (AIM), electron localization function (ELF) and localization orbital locator (LOL). The average local ionization energy (ALIE) study has been carried out. The Hirsfeld surface analysis has been employed to examine the nature of intermolecular contacts in the crystal structure. The strong and weak attractive, repulsive, and van der Waals interactions in the 1EPBH molecule have been determined by the reduced density gradient method (RDG). The natural bonding orbital (NBO) and the Mulliken charges have been computed for the investigated molecule with the density functional theory. The 13C and 1H nuclear magnetic resonance has been applied to confirm the molecular structure. Fourier-transform (IR) and ultraviolet–visible spectra (UV–visible) of the 1EPBH compound has been recorded in the ranges of 4000–500 cm−1 and 250–400 nm, respectively. Finally, the biological activities of 1-Ethylpiperazine-1,4-diium bis(hydrogenoxalate) have been examined. It is shown that the investigated compound (chosen as a ligand) can serve as an important epilepsy and cancer inhibitor
Partial photoionization cross sections of C60 and C70: A gas versus adsorbed phase comparison
We have performed high resolution measurements of the photoelectrons emitted from the valence shell of
C60 and C70, in the gas phase and adsorbed phase on a metal surface, in order to derive branching ratios and
the partial photoionization cross sections of the two highest occupied molecular orbitals, HOMO and HOMO-
1. The comparison between the gas phase and the adsorbed phase shows an interesting and unexpected
difference that can be attributed to a small orbital shift in solid C70. Density Functional Theory calculations
within the Local Density Approximation (LDA) show good agreement for both data sets and give a plausible
explanation for the observed differenc
