53 research outputs found
Preclinical antitumor activity of the diindolylmethane formulation in xenograft mouse model of prostate cancer
Aim: Preclinical study of the specific anticancer pharmacological activity of the formulation containing active substance 3,3ʹ-diindolylmethane (DIM), cod liver oil, polysorbate 80 and α-tocopherol acetate (vitamin E), in vivo in a xenograft animal model of LNCaP. Materials and Methods: The DIM, cod liver oil, polysorbate 80 and α-tocopherol acetate (vitamin E) formulation was intragastrically administered to BALB/c-nude (nu/nu) mice during 33 days post inoculation at the dose of 133 mg/kg/day. Antitumor activity of the test drug was estimated by the rate of tumor growth inhibition (T/C% — treated versus control), dividing the tumor volumes from treatment groups with the control groups. Results: Statistically significant tumor xenograft regressions have been shown in group which received the DIM, cod liver oil, polysorbate 80 and α-tocopherol acetate (vitamin E) on the 37th day of observation post inoculation. The highest antitumor activity was achieved on the 39th day (T/C = 16,8%). Therapeutic effect lasts for 6 days after the end of therapy period. Conclusion: Our findings demonstrate inhibitory effect of the formulation on tumor development in the xenograft animal model due to the tumor growth rate reduction. Key Words: 3,3´-diindolylmethane, bioavailability, anticancer activity, xenograft model, LNCaP cell line, preclinical studies
ПРОФИЛАКТИКА ТУБЕРКУЛЕЗА: СОВРЕМЕННЫЕ ПОДХОДЫ К РАЗРАБОТКЕ ПРОТИВОТУБЕРКУЛЕЗНЫХ ВАКЦИН
This review is focused on recent advances in development of new vaccines for the prevention of tuberculosis. The main reasons for lack of BCG vaccine efficacy in different populations and geographic regions are presented. Design of new vaccines based on live modified strains of Mycobacterium bovis BCG, attenuated strains of Mycobacterium tuberculosis, recombinant proteins and viral vectors is considered in the specific examples. The usage of the heterologous «prime-boost» vaccination strategy against tuberculosis is discussed. В обзоре освещены современные достижения в области разработки новых вакцин для профилактики туберкулеза. Представлены основные причины недостаточной эффективности вакцины БЦЖ в различных популяциях и географических регионах. На конкретных примерах рассмотрены направления дизайна новых вакцин на основе живых модифицированных штаммов Mycobacterium bovis БЦЖ, аттенуированных штаммов Mycobacterium tuberculosis, рекомбинантных белков и вирусных векторов. Обсуждается перспектива применения схемы гетерологичной «prime-boost» вакцинации против туберкулеза.
Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals
The structure of the electron quantum size levels in spherical nanocrystals
is studied in the framework of an eight--band effective mass model at zero and
weak magnetic fields. The effect of the nanocrystal surface is modeled through
the boundary condition imposed on the envelope wave function at the surface. We
show that the spin--orbit splitting of the valence band leads to the
surface--induced spin--orbit splitting of the excited conduction band states
and to the additional surface--induced magnetic moment for electrons in bare
nanocrystals. This additional magnetic moment manifests itself in a nonzero
surface contribution to the linear Zeeman splitting of all quantum size energy
levels including the ground 1S electron state. The fitting of the size
dependence of the ground state electron g factor in CdSe nanocrystals has
allowed us to determine the appropriate surface parameter of the boundary
conditions. The structure of the excited electron states is considered in the
limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
Measurement of and between 3.12 and 3.72 GeV at the KEDR detector
Using the KEDR detector at the VEPP-4M collider, we have measured
the values of and at seven points of the center-of-mass
energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or
better than at most of energy points with a systematic uncertainty of
about . At the moment it is the most accurate measurement of in
this energy range
New precise determination of the \tau lepton mass at KEDR detector
The status of the experiment on the precise lepton mass measurement
running at the VEPP-4M collider with the KEDR detector is reported. The mass
value is evaluated from the cross section behaviour around the
production threshold. The preliminary result based on 6.7 pb of data is
MeV. Using 0.8 pb of data
collected at the peak the preliminary result is also obtained:
eV.Comment: 6 pages, 8 figures; The 9th International Workshop on Tau-Lepton
Physics, Tau0
Measurement of \Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-) and \Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)
The products of the electron width of the J/\psi meson and the branching
fraction of its decays to the lepton pairs were measured using data from the
KEDR experiment at the VEPP-4M electron-positron collider. The results are
\Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-)=(0.3323\pm0.0064\pm0.0048) keV,
\Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)=(0.3318\pm0.0052\pm0.0063) keV.
Their combinations
\Gamma_{ee}\times(\Gamma_{ee}+\Gamma_{\mu\mu})/\Gamma=(0.6641\pm0.0082\pm0.0100)
keV,
\Gamma_{ee}/\Gamma_{\mu\mu}=1.002\pm0.021\pm0.013 can be used to improve
theaccuracy of the leptonic and full widths and test leptonic universality.
Assuming e\mu universality and using the world average value of the lepton
branching fraction, we also determine the leptonic \Gamma_{ll}=5.59\pm0.12 keV
and total \Gamma=94.1\pm2.7 keV widths of the J/\psi meson.Comment: 7 pages, 6 figure
Search for narrow resonances in e+ e- annihilation between 1.85 and 3.1 GeV with the KEDR Detector
We report results of a search for narrow resonances in e+ e- annihilation at
center-of-mass energies between 1.85 and 3.1 GeV performed with the KEDR
detector at the VEPP-4M e+ e- collider. The upper limit on the leptonic width
of a narrow resonance Gamma(R -> ee) Br(R -> hadr) < 120 eV has been obtained
(at 90 % C.L.)
Measurement of main parameters of the \psi(2S) resonance
A high-precision determination of the main parameters of the \psi(2S)
resonance has been performed with the KEDR detector at the VEPP-4M e^{+}e^{-}
collider in three scans of the \psi(2S) -- \psi(3770) energy range. Fitting the
energy dependence of the multihadron cross section in the vicinity of the
\psi(2S) we obtained the mass value
M = 3686.114 +- 0.007 +- 0.011 ^{+0.002}_{-0.012} MeV and the product of the
electron partial width by the branching fraction into hadrons \Gamma_{ee}*B_{h}
= 2.233 +- 0.015 +- 0.037 +- 0.020 keV.
The third error quoted is an estimate of the model dependence of the result
due to assumptions on the interference effects in the cross section of the
single-photon e^{+}e^{-} annihilation to hadrons explicitly considered in this
work.
Implicitly, the same assumptions were employed to obtain the charmonium
leptonic width and the absolute branching fractions in many experiments.
Using the result presented and the world average values of the electron and
hadron branching fractions, one obtains the electron partial width and the
total width of the \psi(2S):
\Gamma_{ee} =2.282 +- 0.015 +- 0.038 +- 0.021 keV,
\Gamma = 296 +- 2 +- 8 +- 3 keV.
These results are consistent with and more than two times more precise than
any of the previous experiments
New precision measurement of the - and -meson masses
A new high precision measurement of the - and -meson masses
has been performed at the VEPP-4M collider using the KEDR detector. The
resonant depolarization method has been employed for the absolute calibration
of the beam energy. The following mass values have been obtained:
MeV,
MeV.
The relative measurement accuracy has reached for and
for , approximately 3 times better than in the previous
precise experiments.Comment: 12 pages, 4 tables, 10 figure
- …