97 research outputs found

    Extracting low frequency climate signal from GRACE data

    Get PDF
    International audienceFor more than four years, the GRACE pair of satellites have been orbiting the Earth, monitoring the time variable mass distribution for scales ranging from regional to global. The GRACE data have been released for a broad scientific community and sets of gravity fields are available. This paper shows that there are evidences at interrannual time scales for the presence of ENSO signal in the data, strongly correlated with the hydrological mass distribution, and also similar to the expected hydrological signature associated with the ENSO cycle. This signal dominates, at global scale, the one associated with geodynamic sources

    Separating climate-induced mass transfers and instrumental effects from tectonic signal in repeated absolute gravity measurements

    Get PDF
    We estimate the signature of the climate-induced mass transfers in repeated absolute gravity measurements based on satellite gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission. We show results at the globe scale and compare them with repeated absolute gravity (AG) time behavior in three zones where AG surveys have been published: Northwestern Europe, Canada, and Tibet. For 10 yearly campaigns, the uncertainties affecting the determination of a linear gravity rate of change range 3–4 nm/s^2/a in most cases, in the absence of instrumental artifacts. The results are consistent with what is observed for long-term repeated campaigns. We also discuss the possible artifact that can result from using short AG survey to determine the tectonic effects in a zone of high hydrological variability. We call into question the tectonic interpretation of several gravity changes reported from stations in Tibet, in particular the variation observed prior to the 2015 Gorkha earthquake

    Closure in the Earth's angular momentum budget observed from subseasonal periods down to four days: No core effects needed

    Get PDF
    International audienceShort period variations in the Earth's rotation rate, length‐of‐day (LOD), are driven mainly by the atmosphere with smaller contributions by the oceans. Previous studies have noted a lag of atmospheric angular momentum (AAM) with LOD that would imply another source. We examine AAM from the European Centre for Medium‐Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) reanalysis series, along with oceanic angular momentum (OAM) from the ECCO consortium; land hydrological effects made no discernible impact. The NCEP reanalysis together with OAM produces a significant lag with LOD, while the ECMWF reanalysis AAM with OAM shows no phase lag. We find significant coherence with LOD variations down to periods of 4 days; coherence losses at shorter periods likely arise from the inverted barometer assumption and unmodeled dynamical processes. Thus the inclusion of core effects is not needed to balance the axial angular momentum budget on sub‐seasonal time scales

    The two types of El-Niño and their impacts on the length of day

    Get PDF
    International audienceAt the interannual to decadal timescale, the changes in the Earth rotation rate are linked with the El-Nin˜o Southern Oscillation phenomena through changes in the Atmospheric Angular Momentum. As climatic studies demonstrate that there were two types of El-Nin˜o events, namely Eastern Pacific (EP) and Central Pacific (CP) events, we investigate how each of them affect the Atmospheric Angular Momentum. We show in particular that EP events are associated with stronger variations of the Atmospheric Angular Momentum and length-of-day. We explain this difference by the stronger pressure gradient over the major mountain ranges, due to a stronger and more efficiently localized pressure dipole over the Pacific Ocean in the case of EP events

    Comparing global seismic tomography models using the varimax Principal Component Analysis

    Get PDF
    Global seismic tomography has greatly progressed in the past decades, with many global Earth models being produced by different research groups. Objective, statistical methods are crucial for the quantitative interpretation of the large amount of information encapsulated by the models as well as for unbiased model comparisons. We propose here to use a rotated version of the Principal Component Analysis (PCA) to compress the information, in order to ease the geological interpretation and model comparison. The method generates between 7 to 15 principal components (PC) for each of the seven tested global tomography models, capturing more than 97 % of the total variance of the model. Each PC consists of a vertical profile, to which a horizontal pattern is associated by projection. The depth profiles and the horizontal patterns enable examining the key characteristics of the main components of the models. Most of the information in the models is associated with a few features: Large Low Shear Velocity Provinces (LLSVPs) in the lowermost mantle, subduction signals and low velocity anomalies likely associated with mantle plumes in the upper and lower mantle, and ridges and cratons in the uppermost mantle. Importantly, all models highlight several independent components in the lower mantle that make between 36 % and 69 % of the total variance, depending on the model, which suggests that the lower mantle is more complex than traditionally assumed. Overall, we find that the varimax PCA is a useful additional tool for the quantitative comparison and interpretation of tomography models

    Noise reduction through joint processing of gravity and gravity gradient data

    Get PDF
    International audienceIn mineral and oil exploration, gravity gradient data can help to delineate small-scale features that cannot be retrieved from gravity measurements. Removing high-frequency noise while preserving the high-frequency real signal is one of the most challenging tasks associated with gravity gradi-ometry data processing. We present a method to reduce gravity and gravity gradient data noise when both are measured in the same area, based on a least-squares simultaneous inversion of observations and physical constraints, inferred from the gravity gradient tensor definition and its mathematical properties. Instead of handling profiles individually, our noise-reduction method uses simultaneously measured values of the tensor components and of gravity in the whole survey area, benefiting from all available information. Synthetic examples show that more than half of the random noise can be removed from all tensor components and nearly all the noise from the gravity anomaly without altering the high-frequency information. We apply our method to a set of marine gravity gradiometry data acquired by Bell Geospace in the Faroe-Shetland Basin to demonstrate its power to resolve small-scale features

    Recent changes of the Earth's core derived from satellite observations of magnetic and gravity fields

    Get PDF
    International audienceTo understand the dynamics of the Earth's fluid, iron-rich outer core, only indirect observations are available. The Earth's magnetic field, originating mainly within the core, and its temporal variations can be used to infer the fluid motion at the top of the core, on a decadal and subdecadal timescale. Gravity variations resulting from changes in the mass distribution within the Earth may also occur on the same timescales. Such variations include the signature of the flow inside the core, though they are largely dominated by the water cycle contributions. Our study is based on 8 y of high-resolution, high-accuracy magnetic and gravity satellite data, provided by the CHAMP and GRACE missions. From the newly derived geomagnetic models we have computed the core magnetic field, its temporal variations, and the core flow evolution. From the GRACE CNES/GRGS series of time variable geoid models, we have obtained interannual gravity models by using specifically designed postprocessing techniques. A correlation analysis between the magnetic and gravity series has demonstrated that the interannual changes in the second time derivative of the core magnetic field under a region from the Atlantic to Indian Ocean coincide in phase with changes in the gravity field. The order of magnitude of these changes and proposed correlation are plausible, compatible with a core origin; however, a complete theoretical model remains to be built. Our new results and their broad geophysical significance could be considered when planning new Earth observation space missions and devising more sophisticated Earth's interior models. Earth's interior ∣ core dynamic

    Local stress sources in Western Europe lithosphere from geoid anomalies

    Get PDF
    We propose a method to evaluate the stress generated at the local scale by the spatial variations of the gravitational potential energy (GPE), which is related to inhomogeneous topography and mass distribution in the lithosphere. We show that it is possible to infer these local stress sources from the second spatial derivatives of a geoid height grid, used as a proxy of the GPE. The coherence of the method is validated on a passive margin, the Bay of Biscay. The result is that expected in such a geological configuration, with extensional local stress sources with the maximum horizontal principal stress parallel to the margin and compressive sources with the maximum horizontal principal stress perpendicular to the margin in the continental and oceanic lithosphere, respectively. We apply the method to Western Europe in order to provide a better understanding of the complex spatial variation of the present-day tectonic activity. Our results indicate a stress pattern from the local sources dominated by short-space-wavelength (of the order of a few tens of kilometers) variations in the tectonic style and in the direction of the maximal horizontal principal stress sigma(H). A comparison of the sigma(H) orientations and tectonic style from the local sources with the ones of the World Stress Map (WSM) data set indicates that the local stress sources can be representative of the deviatoric stress state in some regions. Our results explain 71% of the faulting styles for the earthquake fault-plane solutions in the WSM, which is better than the classical compressive NW-SE stress field model. In the central part of the Pyrenees, the agreement between earthquake fault-slip directions and the direction of shear stress from the local sources acting on the associated fault planes is compatible with the extensional stress field evidenced by recent investigations

    Numerical modelling of post-seismic rupture propagation after the Sumatra 26.12.2004 earthquake constrained by GRACE gravity data

    No full text
    International audienceIn the last decades, the development of the surface and satellite geodetic and geophysical observations brought a new insights into the seismic cycle, documenting new features of inter-, co-, and post-seismic processes. In particular since 2002 satellite mission GRACE provides monthly models of the global gravity field with unprecedented accuracy showing temporal variations of the Earth's gravity field, including those caused by mass redistribution associated with earthquake processes. When combined with GPS measurements, these new data have allowed to assess the relative importance of afterslip and viscoelastic relaxation after the Sumatra 26.12.2004 earthquake. Indeed the observed post-seismic crustal displacements were fitted well by a viscoelastic relaxation model assuming Burgers body rheology for the asthenosphere (60–220 km deep) with a transient viscosity as low as 4 × 10^17 Pas and constant ~ 10^19 Pas steady state viscosity in the 60–660-km depth range. However, even the low-viscosity asthenosphere provides the amplitude of strain which gravity effect does not exceed 50 per cent of the GRACE gravity variations, thus additional localized slip of about 1 m was suggested at downdip extension of the coseismic rupture. Post-seismic slip at coseismic rupture or its downdip extension has been suggested by several authors but the mechanism of the post-seismic fault propagation has never been investigated numerically. Depth and size of localized slip area as well as rate and time decay during the post-seismic stage were either assigned a priory or estimated by fitting real geodesy or gravity data. In this paper we investigate post-seismic rupture propagation by modelling two consequent stages. First, we run a long-term, geodynamic simulation to self-consistently produce the initial stress and temperature distribution. At the second stage, we simulate a seismic cycle using results of the first step as initial conditions. The second short-term simulation involves three substeps, including additional stress accumulation after part of the subduction channel was locked; spontaneous coseismic slip; formation and development of damage zones producing afterslip. During the last substep post-seismic stress leads to gradual ~1 m slip localized at three faults around ~100-km downdip extension of the coseismic rupture. We used the displacement field caused by the slip to calculate pressure and density variations and to simulate gravity field variations. Wavelength of calculated gravity anomaly fits well to that of the real data and its amplitude provides about 60 per cent of the observed GRACE anomaly. Importantly, the surface displacements caused by the estimated afterslip are much smaller than those registered by GPS networks. As a result cumulative effect of Burgers rheology viscoelastic relaxation (which explains measured GPS displacements and about a half of gravity variations) plus post-seismic slip predicted by damage rheology model (which causes much smaller surface displacements but provides another half of the GRACE gravity variations) fits well to both sets of the real data. Hence, the presented numerical modelling based on damage rheology supports the process of post-seismic downdip rupture propagation previously hypothesized from the GRACE gravity data
    corecore