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Noise reduction through joint processing
of gravity and gravity gradient data

G. Pajot1, O. de Viron2,3, M. Diament2, M.-F. Lequentrec-Lalancette4, and V. Mikhailov2,5

ABSTRACT

In mineral and oil exploration, gravity gradient data can
help to delineate small-scale features that cannot be retrieved
from gravity measurements. Removing high-frequency
noise while preserving the high-frequency real signal is one
of the most challenging tasks associated with gravity gradi-
ometry data processing.Wepresent amethod to reduce gravi-
ty and gravity gradient data noise when both are measured in
the same area, based on a least-squares simultaneous inver-
sion of observations and physical constraints, inferred from
the gravity gradient tensor definition and its mathematical
properties. Instead of handling profiles individually, our
noise-reduction method uses simultaneously measured val-
ues of the tensor components and of gravity in the whole sur-
vey area, benefiting from all available information. Synthetic
examples show that more than half of the random noise can
be removed from all tensor components and nearly all the
noise from the gravity anomaly without altering the high-fre-
quency information. We apply our method to a set of marine
gravity gradiometry data acquired by Bell Geospace in the
Faroe-Shetland Basin to demonstrate its power to resolve
small-scale features.

INTRODUCTION

Gravity gradientmeasurements have been used as a gravity explo-
ration technique since the beginning of the twentieth century. The
first instruments, built byBaronRoland vonEötvös �LorándEötvös�
�Shaw andLancaster-Jones, 1922�, used four independent quantities
to measure the horizontal derivatives of the vertical component of
the gravity acceleration vector. They were used successfully in field
studies, e.g., to map oil fields in Slovakia �Szabó, 1998�. Currently,

instruments such as the Lockheed Martin gradiometer �Bell et al.,
1997�measure five independent gravity derivatives and can retrieve
thewhole gravity gradient tensor �full-tensor gravity gradiometry, or
FTG�. In addition to regional surveys, the gravity field and steady-
state ocean circulation explorer �GOCE� satellite will be launched
by the European SpaceAgency �ESA�with an onboard gradiometer.
Its measurements of the gravity gradient tensor elements covering
thewhole earth’s surfacemight lead to geoid and gravity-field global
models of unprecedented accuracy and spatial resolution �e.g.,Klees
et al., 2000�.

For both GOCE and Lockheed Martin instruments, the deriva-
tives of the gravity vector are measured using pairs of accelerome-
ters, separated from each other by a fixed distance �Hofmeyer and
Affleck, 1994�. The derivative of the gravity acceleration vector
along one direction �defined by one pair of accelerometers� is ap-
proximated by the difference between the two measured accelera-
tions, divided by the distance between the accelerometers.When us-
ing this system, common-mode nongravitational linear accelera-
tions, sensed identically by two accelerometers, cancel out during
data acquisition. Devices and special processing techniques reduce
the noise associated with nonlinear accelerations of the craft from
sources such as ship rolling or aircraft bumping �Canuto et al., 2003;
Dransfield and Lee, 2004�.

Measuring gravity gradients retrieves features at a smaller scale
than those characterized with similarly retrieved gravity measure-
ments �European Space Agency, 1999; Mumaw, 2004�. Thus, re-
moving noise in gradient data without filtering out high-frequency
information is a challenge. This requires the development of meth-
ods that benefit from simultaneous observations of all FTG compo-
nents.

To date, gradiometry-data noise-reductionmethods developed for
airborne andmarine surveys have been based on independent analy-
ses of the survey lines and need a priori hypotheses to separate signal
fromnoise. For example, Lyrio et al. �2004� develop awavelet-filter-
ingmethod and apply it to tensor components along the survey lines.
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This method assumes that a large number of finer-scale coefficients
of the wavelet reconstruction are pure noise and that the larger-scale
coefficients are pure signal. Lyrio et al. �2004� propose a method of
determining which scales must be filtered out and, for the remaining
scales, the minimum value of the wavelet coefficients retained. The
remaining nonzero coefficients are then used to estimate the filtered
signal.

The assumption that noise and signal have different energy in real
cases, although reasonable, cannot be demonstrated strictly. More-
over, wavelet thresholding remains a filteringmethod.As Lyrio et al.
�2004� point out, short-scale features associatedwith targets of inter-
est are preserved, but part of the removed field still can be associated
with shallow sources. While et al. �2006� characterize the spectral
content of gravity gradients using 2D information; they can deter-
mine a cutoff wavelength above which the signal can be considered
nongeophysical. However, this method fails when applied to real
data because, according to the authors, the assumptionsmade on cer-
tain properties of the sourcemight not be true for real data.

Recent methods �Mikhailov et al., 2007� are based on the fact that
simultaneously measured gravity gradients are related physically to
each other to locate the sources.Whatwe propose is in the same spir-
it — a noise-reduction method based only on physical consider-
ations. Being the successive derivatives of the same potential, gravi-
ty and gravity gradients are related to each other by differential equa-
tions.We keep as signal the part of the data consistent with these dif-
ferential equations. The inconsistent part then is considered to be
pure noise.

For this study, we used a data set with nearly parallel survey lines
and perpendicular control lines, in the horizontal plane, and with si-
multaneous gravity and gravity gradiometry measurements. Conse-
quently, all the algorithms and tests were developed under those as-
sumptions. In particular,we established the differential relationships
for a survey duringwhich gravity and gravity gradients aremeasured
simultaneously and leveled to a common plane �e.g., marine gravity
gradiometry surveys�.Although themethod can be generalized easi-
ly, we did not test the performance of the generalizedmethod.We in-
verted all of the observation equations together with the differential
equations. This yielded an enhanced data set using all available in-
formation.

The first section of our article addresses themathematical formal-
ismof themethod. In the second section,we demonstrate on synthet-
ic data the capability of our method to remove random noise, corre-
lated or not, while preserving short-scale patterns. In that prospect,
our method and filtering can be used complementarily as long as we
do not have additional physical constraints. In the third section, we
apply the method to real marine gravity gradiometry data collected
by Bell Geospace in the Faroe-Shetland Basin. Finally, we discuss
the relevance of our method to mineral exploration and satellite data
processing.

METHOD

Equations

Gravity gradiometry data are measurements of the derivatives of
the components of the gravity vector g � �gx,gy,gz� in three orthog-
onal directions of space �x,y,z�. These derivatives are the compo-
nents of the gravity gradient tensor, whichwe denote by

T � �Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz
�, where

�1�

T�� �
�g�

��
� � �g� ∀ ��,� � � �x,y,z� .

The gravity vector components are first-order derivatives of a poten-
tial functionV, which obeys Laplace’s equation in free space. Gravi-
ty gradients are thus second-order derivatives of the same potential
functionV. Therefore, in free space,T is symmetric:

T�� �
�

��

�V

��
�

�

��

�V

��
� T� �, ∀ ��,� � � �x,y,z� .

�2�

The trace ofT is zero:

�
���x,y,z�

T�� � �2V � 0. �3�

Because of equations 2 and 3, only five of the nine components of
the tensor are independent quantities. Simultaneous measurements
of five quantities at every point are enough to recover the whole ten-
sor �FTG�. In marine FTG surveys, the gravity gradients and gz are
measured simultaneously, with gz measured independently from the
gradients. Our theoretical work is based on simultaneous measure-
ments of Txx, Txy, Txz, Tyy, Tyz, and gz. It can be extended to any case in
which those quantities can be computed from other measurements,
with independent errors.

By definition of T, the following linear differential equation sys-
tem holds:

	
� yTxx � � xTxy

� yTxy � � xTyy

� yTxz � � xTyz

� ygz � Tyz

� xgz � Txz

� zTxx � � xTxz

� zTxy � � xTyz

� zTyy � � yTyz

� zgz � Tzz

. �4�

Weconsider thatmeasurements aremade at a constant z-level.Wedo
not consider upward-continued data; therefore, we drop the last four
equations of system 4.We are left with two independent subsystems:


� yTxx � � xTxy

� yTxy � � xTyy
�horizontal system� �5�

and

	� yTxz � � xTyz

� xgz � Txz

� ygz � Tyz

�vertical system� . �6�
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In the second subsystem, only two equations of the three are inde-
pendent.We keep the first two, reducing system 6 to


� yTxz � � xTyz

� xgz � Txz
�vertical system� . �7�

Ideal noise-free measurements of T�� and gz would satisfy the
conditions imposed by systems 5 and 7 at any measurement point.
Random noise, on the contrary, would not follow these equations.
We use systems 5 and 7 as physical constraints that must be satisfied
by noise-free measurements, in combination with observation equa-
tions, to reduce the random noise in the data. In other words, we
compute Txx, Txy, Txz, Tyy, Tyz, and gz that at each measurement point
satisfy optimally both systems 5 and 7 and the observation equations


T�� � T ��
m , �� � �xx,xy,yy,xz,yz�

gz � gz
m,

, �8�

where the superscript m denotes the measured value. Note that
Laplace’s equation �zero trace, equation 3� usually is used to relate
the tensor components to each other to improve signal quality �Ham-
mond, 1999�while acquiring FTGdata.
Our method differs from previous work because it uses differen-

tial equations to relate the components to each other. In particular,
ourmethod requires that we provide an adequateway to compute the
derivatives of the components. This problem is addressed later in
this paper.

Least-squares formulation of the problem

We assume henceforward that the measurement errors follow a
Gaussian or close toGaussian distribution.We simultaneously solve
observation equations 8 with physical-constraint equations 5 and 7
to reduce noise in the data. Practically, we compute the values of Txx,
Txy, Txz, Tyy, Tyz, and gz so that they minimize the sum over all data
points of the squared misfits d�

obs between computed values and ob-
servations, defined at each data point i by

d�
obs�i� � �T��i� � T �

m�i�� , �9�

where T�
m�i� is the value of a component �tensor component or gz�

measured at one point i, andT��i� is the value of the same component
retrieved by ourmethod at the same point.

The computed values simultaneously must satisfy the physical
constraint equations, whichmeans that in addition tominimizing the
sumof the squaredmisfits d�

obs to themeasured values, they alsomust
minimize the sumof the squared quantities d� �

eq , defined by

d � �
eq �i� � �� xT� �i� � � yT� �i�� , �10�

where T��i� and T� �i� stand for tensor components involved in one
equation of the horizontal system 5 or in the first equation of the ver-
tical system 7.We also minimize, from the last equation of the verti-
cal system 7, the sumof the squared quantities deq, defined by

d eq�i� � �� xgz�i� � Txz�i�� . �11�

For Gaussian errors, finding the minimum variance solution to
this problem is equivalent tominimizing the sumof the square resid-
uals �dobs�2 � �deq�2. Consequently, for the horizontal system 5, we
compute values ofTxx,Txy, andTyy thatminimize the sum

Rh � �
datapoints

��Txx � T xx
m �2 � �Txy � T xy

m �2 � �Tyy � T yy
m �2

� �� yTxx � � xTxy�2 � �� yTxy � � xTyy�2� . �12�

For system 7, we compute values of Txz, Tyz, and gz that minimize the
sum

Rv � �
datapoints

��Txz � T xz
m �2 � �Tyz � T yz

m �2 � �gz � gz
m�2

� �� yTxz � � xTyz�2 � �� xgz � Txz�2� . �13�

Quantities in equation 13 are set to be dimensionless, as explained
below. By nature, themethod is not designed to remove any bias.

Computing the derivatives

To compute the enhanced values of the components, we need a
way to compute their derivatives. Most of the numerical differentia-
tion schemes express derivatives as linear combinations of data dis-
tributed on a lattice. This discretization process is associated with an
error becoming larger when the distance between two data points in-
creases.Assuming that the data are distributed on a grid with regular
steps�x and�y along x- and y-directions, we basically adopt two de-
rivative schemes.

The first is to compute second-order centered finite differences.
The derivative � xT��xi,yj� of one component T� is approximated at
point �xi,yj� by

� xT��i, j� �
T��xi�1,yj� � T��xi�1,yj�

2�x
, �14�

where �xi�1,yj� and �xi�1,yj� are neighboring data points of �xi,yj� in
the x-direction, both separated from �xi,yj� on the computing grid by
�x. Similar expressions hold for the derivatives along the
y-direction.
The second scheme is to compute from several neighboring points

a low-degree polynomial fit of the data in the direction of the deriva-
tive and to use the analytical derivative of this polynomial function
to approximate the derivative of the component. �Details are given in
Appendix A.� Such an approximation is necessary when data are
sampledmuchmore densely in one direction than in the other. Using
this approximation helps to prevent noise enhancement resulting
from the derivative computation �here, this effect is considered
much larger than the discretization error�.

Then derivative � xT��xi,yj� of one component T� in the x-di-
rection is approximated at point �xi,yj� by

� xT��xi,yj� � �
m�i�N

i�N

� mT��xm,yj� , �15�

where coefficients � m are computed according to the method de-
scribed inAppendixA.Typically, the number 2N � 1 of points from
which the polynomial approximation is computed is chosen such
that the distance � � xi�N � xi�N equals �y. We use a similar ex-
pressionwhen computing the derivative along the y-direction.
The finite-difference method, albeit simplistic, yields results as

good as the more sophisticated polynomial method as long as the
data are distributed evenly. It ismuch faster; therefore,we use it in all
the tests with evenly distributed data.We do not need data to be dis-
tributed along profiles parallel to the x- and y-axes. Derivatives can
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be computed in the twowaysmentioned above using the true coordi-
nates of the data points. However, for simplicity, we present our re-
sults for data distributed on regular grids.We address the problem of
irregular data sampling later, when applying our method to real ma-
rine gravity gradiometry data.

Matrix formulation

The derivatives of one tensor component are expressed as linear
combinations of the values of the same component at neighboring
points. This allows us to write the problem of minimizing residuals
in equations 12 and 13 in matrix form.We denote A as the matrix of
normal equations �physical constraint and observation equations�, x
as the vector containing the unknowns �i.e., the enhanced values of
the tensor components and gz�, and b as the observation vector. The
system of equations

Ax � b �16�

is overdetermined. We compute the values of Txx, Txy, Txz, Tyy, Tyz,
and gz thatminimize theL2-norm of the vectorAx � b.

Two kinds of equations are described byA: observation and phys-
ical constraint. Matrix A is made of two separate blocks. One block
has observation equations of the type given in equation 8. The corre-
sponding block of the normal matrix is diagonal, and the associated
block of vector b is the set of observations. The second block has
physical constraint equations 5 and 7. Equations of the form

�

�x
Ty��xi0

,yi0
� �

�

� y
Tx��xi0

,yi0
� �17�

can bewritten as

�
i�Vx�i0�

aiTy��xi,yi0
� � �

i�Vy�i0�
biTx��xi0

,yi� � 0, �18�

where Vx�i0� and Vy�i0� are sets of indices denoting coordinates of
neighboring points of �xi0

,yi0
�. The number and positions of the

neighboring points depend on themethod chosen to compute the de-
rivatives, as do the values of coefficients ai and bi. Similar expres-
sions are derived for equations 7 involving gz.

For instance, using a centered second-order finite-difference
scheme, the first equation of system 5 becomes

1

�x
Txy�xi�1,yi� �

1

�x
Txy�xi�1,yi� �

1

�y
Txx�xi,yi�1�

�
1

�y
Txx�xi,yi�1� � 0. �19�

The associated block of the normal matrix is not far from diagonal,
and the corresponding components ofb are zeros.
Matrix A is sparse. Many algorithms solve least-squares inver-

sion quickly and with fair stability �e.g., Paige and Saunders, 1982�.
When expressed in SI units �usual units are the Eötvös unit for
gravity gradients �1 E � 10�9 s�2� and milligals for gravity �1
mGal � 10�5 m/s2��, gz and tensor component values associated
with the same geology might differ by several orders of magnitude.
This affects the efficiency of the inversion algorithm and over-
weights the impact of some of the equations.

To overcome this problem, equation systems 5 and 7 are trans-
formed so the equations involve only quantities with no physical di-

mension and are of first-order magnitude. Instead of solving for gz

and tensor componentsT�� , we solve for quantities

	gz� �
1

g0
gz

T��� �
�0

g0
T��

, �20�

where g0 is the standard deviation of the value of gz in the survey area
and�0 is the diameter of the survey area. Intervals�x and�y between
points along the x- and y-directions become �x� and �y�, respectively,
where

	�x� �
�x

�0

�y� �
�y

�0

. �21�

This procedure improves the efficiency of the algorithm for sys-
tem 7. For example, replacing Txx and Txy by �0/g0Txx� and �0/g0Txy� ,
respectively, and �x and �y by �0�x� and �0�y� transforms equation
19 into

1

�x�
Txy� �xi�1,yi� �

1

�x�
Txy� �xi�1,yi� �

1

�y�
Txx� �xi,yi�1�

�
1

�y�
Txx� �xi,yi�1� � 0. �22�

The finite-difference form of the last equation of system 7 becomes

1

�x�
gz��xi�1,yi� �

1

�x�
gz��xi�1,yi� � Txz� �xi,yi� � 0.

�23�

In our study, we normalize data to account for the amplitude differ-
ence of the differentmeasured quantities.This can be extended to ac-
count for a priori knowledge about the quality of each measurement
�e.g., if the variance/covariancematrix is known�.

TESTS ON SYNTHETIC DATA

In this section, tests are performed using synthetic data computed
on regular square grids.

Estimator for noise reduction

Denoting X as the synthetic value of a tensor component or of gz

prior to adding noise,Xn the valuewhen noise is added, andXr the re-
sult of our least-squares fit, we determine the performance of the
noise-reduction method by estimating for each component the
noise-reduction factor:

� �
var�Xn � X� � var�Xr � X�

var�Xn � X�
�24�

where var is a discrete realization of the variance computed by using
all of the values on the grid. A positive value of � indicates that the
noise has been reduced, and the magnitude of � is the ratio of the
eliminated noise. Values close to one indicate a high percentage of
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the noise has been removed; near-zero values indicate poor perfor-
mance of themethod.

Sensitivity to the nature and magnitude
of noise

We first describe the sensitivity of our method
to data resolution and noise level using Gaussian
white noise and autocorrelated noise. To this end,
using formulas derived by Okabe �1979�, we
compute synthetic gravity gradients and gz corre-
sponding to a structure made of three rectangular
prisms; the characteristics are listed in Table 1
and illustrated in Figure 1. This structure com-
bines bodies at different depths andwith different
spatial extents, which allows us to test the effi-
ciency of our noise-reduction method for a broad
range of spatial scales. The three bodies could
represent a large, deep basement �prism1�, a shal-
low anomaly �prism 2�, and a thin dyke �prism 3�.
The synthetic signal is seen on the left panels of Figures 2 and 3.

Gaussian white noise

Tests are performed with white Gaussian noise of standard devia-
tion � �in Eötvös for the tensor components, in milligals for gz�,
which is set as a percentage of themaximumpeak-to-peak amplitude
of the original �noise-free� component.

Data resolution

Weaddnoise to the synthetic datawith� equal to 10%of themax-
imum peak-to-peak amplitude of the components and compare the
noise-reduction results at different grid resolutions �grid steps�.
These results are shown inTable 2 and are illustrated in Figures 2 and
3. Increasing grid resolution improves the results. In particular, �
reaches a value that differs fromone by less thanfive permil, indicat-
ing that the noise-reduction technique removesmore than 99%of the
noise on gz. In addition, more than half of the noise is removed from
the tensor components.

However, as the grid step decreases, � tends asymptotically to a
maximum value �T

max that depends on the component T �tensor com-
ponent, or gz� under consideration. These �max values are such that,
defining for each system the average value�lim by

	�lim
h �

�Txx

max � �Txy

max � �Tyy

max

3
for system 5

�lim
v �

�Txz

max � �Tyz

max � �gz

max

3
for system 7

, �25�

we have

	�lim
h �

2

3

�lim
v �

2

3

. �26�

The two-thirds ratio probably is linked with the ratio between the
number of independent equations �two� and the number of un-
knowns �three�.

To confirm this conjecture, we performed tests removing one
equation. Removing one equation leaves one equation with two un-
knowns, leading to �lim

h � �lim
v �1/2. The two systems do not have

the same behavior, however. For system 5, both tensor components

Table 1. Characteristics of the three rectangular prisms considered in the
synthetic model. Positions of the centers of the top sides are given in the
(x,y)-plane of a Cartesian frame (O,x,y,z). Prism 3 is rotated in the (x,y)-plane
around its center.

Prism

Dimensions
x	y	z

�km�	 �km�	 �km�

Top side
center �x,y�
�km, km�

Top side
depth
�km�

Rotation
angle

�radians�

Density
contrast
�kg/m3�

1 30	5	8 �25.0, 17.5� 3.0 0 �500

2 3	3	1 �15.0, 25.0� 0.5 0 �300

3 1	20	7.5 �40.8, 25.1� 0.5 �
 /4 �300
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y
)

mk(

x (km)

1
∆ = +500

2
∆ = −300

3
∆ = +300ρ

ρ

ρ

Figure 1. Projection, onto the �x,y�-plane, of the three blocks de-
scribed in Table 1. Density contrasts �� are in kilograms per cubic
meter �kg/m3�.

Noise free Noise added Result

Txx

Txy

Tyy

40
20
0

− 20
− 40
− 60

y
)

mk(
y

)
mk(

y
)

m k(

x (km) x (km) x (km)

Figure 2. Noise-reduction results for horizontal system 5,with a grid
step of 100 m, for a noise standard deviation equal to 10% of the
peak-to-peak amplitude of the components. The color scale is the
same for all tensor components. Black lines delineate projections of
the top sides of the anomalous bodies onto the �x,y�-plane.
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involved are corrected to the same extent ��max � 0.50� regardless
ofwhich equation is kept.This stands for system7 ifwe keep the first
equation and drop the equation involving gz. Instead, if we keep the
equation involving gz and drop the first equation, we obtain �max

� 1.00 for gz and �max � 0.00 for Txz. Gravity gradients do not seem
to benefit from any information brought by gz. Therefore, we con-
clude that as long as data have a sufficient resolution, we should re-
move two-thirds of the randomnoise they contain.

We observed in our simulations that given a grid resolution, the
�lim value does not change when the noise level increases, staying
equal to two-thirds.We focus later on the behavior of our method as
the data-grid sampling decreases because this is related to the fre-
quency content of the sampled signal.

Signal-to-noise ratio

We investigate the impact of raising or lowering the noise level
with a given grid step. As shown, optimal values are obtained for a
grid step less than or equal to 200 m. Consequently, the following
tests are performed on a regular square gridwith a step of 200 m.Re-
sults are shown in Figure 4. The method becomes more effective as

the signal-to-noise ratio decreases, and it does not perform well
when the noise level is too low.This is thought to be related to �a� the
criteria used for stopping the least-squares inversion �see Paige and
Saunders �1982� for details on the inversion algorithm used here�
and �b� the measurement error becoming small with respect to the
discretization error.As the noise level increases, the noise-reduction
factor � on each component reaches its optimum value, leading to a
mean noise-reduction factor of two-thirds.

Impact of smoothing

Low-pass filtering is designed to attenuate the high-frequency
part of a signal. In this section, we compare the results of ourmethod
with a low-pass filter. A Gaussian smoothing �Wells, 1986� with a
standard deviation of 0.65 is applied to the gridded data in a 3	3
point window �Figure 5 for horizontal system 5; Figure 6 for vertical
system 7�. Of course, better filters could be used. However, because
we only want to demonstrate how our method handles high frequen-
cies, this simple filter suffices.

With Gaussian smoothing, � tends asymptotically toward a value
close to 0.8 for all components. For Txx, Tyy, Txz, and Tyz, Gaussian
smoothing performs better than our method when noise increases,
but for Txy, bothmethods perform similarly. For gz, ourmethod gives
the best result. For all components, a combination of smoothing and
our method gives better results than using either method alone. We
show later through spectral analyses that smoothing and our method
have distinct and complementary natures; this is particularly inter-
esting at high frequencies. Note that for lower values of the standard
deviation of the noise, � is negative for smoothing. This means that
after smoothing, the data fit the noise-free synthetic data less well
thanwithout smoothing.

To conclude, we have shown on synthetic data that ourmethod al-
lows us to remove two-thirds of the added noise independently of the
noise level as long as the noise is not too small. In our test cases,
Gaussian filtering performs slightly better than our method. It re-
moves the noise according to hypotheses on the spectral content of
the signal. On the other hand, our method reduces noise on the basis
of the potential basis of the tensor. Consequently, filtering and our

Table 2. Noise reduction as a function of the grid step for
regular square grids. Results of our method are given for a
white Gaussian noise with standard deviation of
approximately 10% of the peak-to-peak amplitude of the
component variation.

�

Grid
step
�m� Txx Txy Tyy Txz Tyz gz

1000 0.57 0.78 0.55 0.49 0.50 0.92

500 0.59 0.78 0.59 0.50 0.49 0.98

200 0.59 0.80 0.60 0.50 0.50 0.99

100 0.60 0.80 0.60 0.50 0.50 1.00

Noise free Noise added Result
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Figure 3. Noise-reduction results for vertical system 7, with a grid
step of 100 m, for a noise standard deviation equal to 10% of the
peak-to-peak amplitude of the components. The color scale is the
same for all tensor components and, for gz, with or without noise and
reconstructed. Black lines delineate projections of the top sides of
the anomalous bodies onto the �x,y�-plane.
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method can be used together to optimize noise reduction.
We also tested our method on synthetic data contaminated with

covariant noise generated from Gaussian distributions by a second-
order autoregressive process as well as uniformly distributed �non-
Gaussian� noise.We obtained similar results as with Gaussian white
noise �as long as the noise autocorrelation is not unrealistically high
in the case of a covariant noise�.

Short-wavelength preservation
As outlined in the introduction, gravity gradients can help retrieve

the shortest wavelengths of the gravity signal when these cannot be
measured precisely by gravimeters. Therefore, a gradiometry noise-
reduction method must preserve the high-frequency content. In this
respect, our method complements smoothing, as illustrated by the
following example.

We generated a structure composed of 40 identical rectangular
prisms measuring 50 km	50 m in the �x,y�-plane, with depths to
their top and bottom sides of 30 m and 10 km, respectively, and den-
sity of 1000 kg/m3. Twenty prisms were regularly set parallel to the
y-axis every 2.4 km.Thesewere intersected by 20 other prisms, reg-
ularly set parallel to the x-axis every 2.4 km. The gradient contribu-
tions of the 40 prisms were added so that their intersections �rectan-
gular prisms with square�50-	50-m top sides� had twice the den-
sity of the individual prisms. The projection of this structure onto the
�x,y�-plane is shown in Figure 7.

We computed the gz signal on three square 50	50-km grids, with
data points every 250, 500, and 1000 m. We contaminated gz with
10% Gaussian noise. For the grids that had steps of 250 and 500 m,
the �-parameter for our method was greater than 0.99, which is al-
ways greater than the maximum � value �0.94� obtained with
smoothing �the best window size for smoothing is, according to our
tests, 7	7 for 250-m step grids and 5	5 for 500-m step grids�.
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Figure 5. Comparison, on a regular square grid with a step of 200 m,
between the impact of Gaussian smoothing in a 3	3 point window
and our noise-reductionmethod for �a� the tensor component Txx, �b�
the tensor component Txy, and �c� the tensor component Tyy involved
in horizontal system 5. The circle stands for the result of our method
only, the triangle for the result of Gaussian smoothing only, and the
diamond for the result of the two methods applied successively. The
standard deviation� is in Eötvös.
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Figure 6. Comparison, on a regular square grid with a step of 200 m,
between the impact of Gaussian smoothing in a 3	3 point window
and our noise-reductionmethod for �a� the tensor component Txz, �b�
the tensor componentTyz, and �c� the component gz involved in verti-
cal system 7.
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Results on a profile for the 250-m step grid and the 500-m step grid
are shown in Figure 8. The best result obtained byGaussian smooth-
ing does not fit the original noise-free synthetic data as well as our
solution does. The average power spectra in the x-direction �mean of
the spectra along all profiles parallel to the x-axis� for these two ex-
amples are shown in Figure 9. For the 250-m step grid, the power
curve of our solution �dotted black� matches almost exactly that of
the original data �red�. At the larger grid step, our solution has too
much power in the shorter wavelengths �high frequencies�, but its
spectrum still has a shape similar to that of the original data.

Tests performed at a grid step of 1000 m confirm that when ap-
proaching the Nyquist frequency �0.84 � 1/1.19 km�1�, power in
the high frequencies is amplified �see Figure 10�. The anomalies are
detected better thanwith smoothing, but their magnitude is overesti-
mated. It then becomes necessary to apply a light smoothing �3	3�
to our solution to retrieve the original signal, butwith greater accura-
cy than with smoothing only. This example shows that smoothing
and our method complement each other, especially for short-wave-
length signals.

50 m

50 m

2.4 km

50 km

50 km

2.4 km

y

x

Figure 7. Projection onto the �x,y�-plane of the structure used to
show how our method handles small wavelengths. The structure is
made of 40 identical rectangular prisms arranged in an orthogonal
lattice, each prism having �x,y�-dimensions of 50 m	50 km. The
depth to the top sides of the prism is 30 m.The depth to the bottom is
10,000 m.The density contrast is 1000 kg/m3.
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Figure 8. Comparison along a profile for a grid step of �a� 250 m and
�b� 500 m between the noise-reduction results of our method and
Gaussian smoothing with varying window size, applied on gz. In the
background, gray represents the anomalywith 10% noise added, red
the original anomaly, dotted black our result, and dark and light blue
the results of Gaussian smoothing.

2 3 4 5 6 7 8 9 1010-6

10-5

10-4

10-3

10-2

10-1

Wavelength (km)

rewoP
laG

m(
2
)

m

Synthetic data
Synthetic data with 10% noise added
3 x 3 smoothing
7 x 7 smoothing
Our method

2 3 4 5 6 7 8 9 1010-7

10-6

10-5

10-4

10-3

10-2

10-1

rewoP
laG

m(
2

)
m

Synthetic data
Synthetic data with 10% noise added
3 x 3 smoothing
5 x 5 smoothing
Our method

Wavelength (km)

a)

b)

Figure 9. Mean of the power spectra of all profiles parallel to the
x-axis for the results of ourmethod and forGaussian smoothing on gz

for a grid step of �a� 250 m and �b� 500 m. Colors are the same as for
Figure 8.

I30 Pajot et al.



APPLICATION TO MARINE GRAVITY
GRADIOMETRY DATA

We now apply our method to a set of marine gravity gradiometry
data and the vertical gravity anomaly collected over the Faroe-Shet-
land Basin. These data were provided by Bell Geospace for this
study. The various components were corrected for bathymetric ef-
fects before being provided to us.The data setwe consider is a subset
of a larger survey, thoroughly described byMumaw �2004�. The sur-
vey is composed of roughly parallel lines oriented at 45N, called
L-lines, and lines perpendicular to the L-lines, called T-lines,
mapped onto themeasured gravity anomaly in Figure 11.

Application to Bell Geospace data

The tests in Appendix B show that as long as data are distributed
on a near-regular lattice, we can work on a regular grid without
greatly impacting the result, thus saving computing time. We pre-
pared the data set to be handled in two steps. First, we rotated the grid
coordinates so that L-lines are parallel to the x-axis, pointing east-
ward, and T-lines are parallel to the y-axis, pointing northward. The
gravity gradients are tensor components, so they are transformed to
account for the rotation of the coordinate system.

Second, we regularized the grid. We determined a grid made of
strictly parallel and perpendicular lines that approaches the original
survey grid.We constructed a rectangular latticewith points regular-
ly spaced on an L- or T-line and identified a given lattice point with
the nearest survey point.We obtained 29 L-lines separated by 750 m

and 21 T-lines separated from each other by 2250 m. This operation
resulted in a grid of 1018 points regularly spaced on theT-lines, with
an interval equal to 21 m, and 2105 points on an L-line, with the
same interval. We obtained a standard deviation of the position er-
rors of less than 20 m,which is of no significant impact on the result.

Results

Wepresent the result of ourmethod only, with no additional filter-
ing. Indeed, choosing the appropriate cutoff wavelength for smooth-
ingwould require a priori hypotheses on the sources, which is irrele-
vant here.

Before we applied our noise-reduction method, we tested the raw
data for relationships 5 and 7. Residuals between computed deriva-
tives of gz in the x- and y-directions and Txz and Tyz, respectively,
showed no large-scale patterns—only small-scale spatial variations
with amplitude of the same magnitude as the signal. After applying
themethod, this amplitudewas reduced significantly �by 50–100%�.

The results are illustrated in Figures 12 and 13. We can see that
many short-wavelength features have been removed. However,
small-scale features that would have been smoothed by low-pass fil-
tering are preserved. The gravity anomaly gz has been modified
slightly. The comparison, on a profile parallel with the x-axis, be-
tween the noise-reduction result and the original raw data is shown
forTyz in Figure 14.

DISCUSSION

When describing a gravity gradiometer system similar to the
LockheedMartin instrument, vanLeeuwen et al. �2005� identify two
general types of noise in airborne �or shipborne� gravity gradiometry
measurements: deterministic and intrinsic random noise. Determin-
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tween the results of our method enhanced by smoothing and the re-
sults of smoothing only.
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istic noise has three main causes: �1� the change in gravity sensed by
the gradiometerwhenmassesmovewith respect to the instrument it-
self �self-gradient�; �2� an additional contribution to the signal,
called residual acceleration sensitivity, that is proportional to the ac-
celerations measured by the gradiometer; and �3� a contribution
from, for instance, the rotation of the platform on which the gradi-
ometer ismounted.

The self-gradient is a true gradient; therefore, it obeys the equa-
tions in systems 5 and 7. The same holds true for rotational noise,
which mimics a gravity gradient. According to van Leeuwen et al.
�2005�, these contributions are corrected easily because they can be
modeled ormeasured prior to the survey and removed during or after
acquisition. However, intrinsic random noise limits the measure-
ment accuracy and even limits reduction of residual acceleration
sensitivity. Being purely random, this intrinsic noise is addressed
fully and removed successively by ourmethod.

In the GOCE mission as well as in airborne surveys, all tensor
components are measured simultaneously, but gz is not measured si-
multaneously. The gravity field is computed from both themeasured
gradient components, for the high-frequency part, and the precise
determination of the orbit of the satellite, for the low-frequency part
�Visser andVan den Ijssel, 2000�. Our method still can be applied to
the components involved in system 5 if a method can be found to
compute the z-derivative �for example, by using a multisatellite sys-
tem or upward continuation of the components�.

Themethod even can be refined using, instead of systems 5 and 7,
the physical constraints defined by the following approximate linear
differential system:

	
� yTxx � � xTxy

� yTxy � � xTyy

� yTxz � � xTyz

� zTxx � � xTxz

� zTxy � � xTyz

� zTyy � � yTyz

� yTzz � � zTyy

� xTzz � � zTxz

. �27�

The vertical component Tzz actually is measured rather than being
computed fromTxx andTyy, so Laplace’s equation also can be added.

CONCLUSION

We have developed a method for simultaneously reducing noise
from independent gravity and FTG data. This method does not re-
quire a priori information. Moreover, it uses all measured values si-
multaneously instead of handling lines of the survey separately.
Therefore, all available information coming from the data is used to
improve the values at each measurement point. We do not filter the
data, so the high frequencies of the signal are preserved. This is of
tremendous importancewhen dealingwith such data because the ex-
pected benefit from gravity gradiometry data is the additional high-
frequency information brought by the derivatives, as compared with
gravity measurements only. Our method corrects half of the random
noise affecting gravity gradients �which later can be improved by
light filtering if needed for gradiometry interpretation� and most of
the noise in the gravity anomaly.

Furthermore, results are affected by noise autocorrelation only
weakly. Finite differences can be replaced by another way to com-
pute the derivatives as long as the derivative can bewritten as a linear
combination of some values of the components. However, this in-
creases the computing time �from3 to 17 s for theBellGeospace data
example on a standard personal computer� and is not necessary for
low-resolution data. We demonstrated the power of this method on
synthetic data and illustrated it on real data acquired by Bell
Geospace over the Faroe-Shetland Basin. We obtained maps show-
ing that noise was reduced visibly and that small-scale features were
preserved that would have been smoothed out by a filteringmethod.

In the Bell Geospace data, the diagonal components of the tensor
were preprocessed so the trace was zero. Consequently, only two of
these diagonal components have independent errors, so our method
cannot be applied using the three diagonal components simulta-
neously. We chose not to solve for Tzz; because gz was in our case
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study, we had another option to remove noise from the nondiagonal
components. Noise reduction likely will improve if we add to the
horizontal and vertical system equations involving Tzz when it is
measured simultaneouslywith the other gradients.
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APPENDIX A

COMPUTING THE DERIVATIVES

The equationswe used throughout the study are of the form

�F�x,y�
�x

�
�G�x,y�

� y
� 0 �A-1�

or, in the case of system 7, of the form

�F�x,y�
�x

� G�x,y� � 0 �A-2�

or

�F�x,y�
� y

� G�x,y� � 0. �A-3�

Let us focus on the form described by equation A-1. This can be ap-
proximated by the centered-difference scheme:

F�xi�1,yj� � F�xi�1,yj�
�x

�
G�xi,yj�1� � G�xi,yj�1�

�y
.

�A-4�

This scheme becomes increasingly unfavorable when the sampling
interval decreases if the signal does not include enough high-wave-
number content. This is obviously the case in our simulation because
of the simplicity and lateral extent of the sources in consideration.

Let us suppose that the sampling interval decreases in the
x-direction ��x��y�. To overcome this problem, we apply the
equation linking the gradient to what would be the best polynomial
fit of the data, with given degree, in direction x of the highest sam-
pling. The approximation of the 2N � 1 measurements F�xk,yj�, k
� i � N . . . i � N using a polynomial of degree n at locations xk can
bewritten as

F�xk,yj� 
 �
m�0

n

�mxk
m, �A-5�

where the coefficients � i are determined so that the sum of the
squared residuals is minimal.We determine the expression of the � i

coefficients as a function of the value of the datum F�xk,yj�, and we
substitute them in the expression of the derivative of the polynomial
fit:

�F�xi,yj�
�x


 �
m�1

n

m�mxi
m�1. �A-6�

Every �m can be expressed as a linear combination of the measure-
mentsF�xk,yj�, sowe then obtain an expression such as

�F�xi,yj�
�x


 �
m�i�N

i�N

� mF�xm,yj� , �A-7�

where � m coefficients depend on 1/�x. Consequently, in the least-
squares fit of our data, we replace equationA-4with

�
m�i�N

i�N

� mF�xm,yj� �
G�xi,yj�1� � G�xi,yj�1�

�y
� 0.

�A-8�

Similarly, equationA-2 transforms to

�
m�i�N

i�N

� mF�xm,yj� � G�xi,yj� � 0, �A-9�

but equationA-3 stays as

F�xi,yj�1� � F�xi,yj�1�
�y

� G�xi,yj� � 0. �A-10�

APPENDIX B

EFFECT OF GRID IRREGULARITIES

In our tests,we used regular square gridswith identical steps in the
x- and y-directions. To handle real data, we must account for two
main differences: �1� the sampling interval along a line is much
smaller than the distance between lines, and �2� the positions of the
measurement points do not follow straight lines.

Grid anisotropy

At first, we work on a grid where data are distributed on a lattice
made of parallel and perpendicular straight lines, but we investigate
what happens for the points not locatedwhere lines intersect.We be-
gin with the synthetic structure, a 50-	50-km square grid with a
noise level equal to about 10%of themaximumpeak-to-peak ampli-
tude of the component. In this case, where the interval between two
consecutive points on a profile is small, finite differences are not ap-
propriate for computing the derivatives when handling real data.We
performed testswith several orders of finite-difference schemeswith
no significant improvement in the results.We present herewhat hap-
penswhen the sampling interval decreases in one direction.

Tables B-1 and B-2 summarize the noise-reduction results when
the sampling interval decreases in the y- and x-directions, respec-
tively. In both cases, the derivatives are computed using centered
second-order finite differences �see Appendix A�. The derivative
along the direction in which the sampling interval decreases �Txx and
Txz for y-interval decreasing, Tyy and Tyz for x-interval decreasing� or
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components that have derivatives involved in more than one equa-
tion �Txy and gz� all are corrected better because the sampling interval
decreases in either of the two directions. However, at the same time,
the noise affecting the other components is lesswell reduced.

The problem is overcome when using, to calculate derivatives, a
least-squares fit of a low-degree polynomial, as described inAppen-
dix A. Results are improved in such a way that we retrieve results
similar to those obtained on regular square grids. However, thismul-
tiplies the computing time by five and can be avoidedwhen unneces-
sary.

Positioning misfit

To test what happens for data that are not distributed perfectly
along straight lines, we performed the following test. First we let
�xi

0,yj
0� be the coordinates of the measurement points on a regular

square grid.Arandom component with normal distributionwas add-
ed to the coordinates of each of these points. We denoted �xi

1,yj
1� as

the new coordinates. Next we generated synthetic data. The values
T1 of the components were computed at �xi

1,yj
1�. Third, we added

noise to the values of the components and then applied ourmethod to
the data, assuming the measurement points to be �xi

0,yj
0� instead of

�xi
1,yj

1�. Finally, we compared the results of our method to the noise-

free synthetic data T1 computed at �xi
1,yj

1� �testA�
and to the noise-free synthetic data T0 computed
at �xi

0,yj
0� �test B�.

We performed this test with the same synthetic
data used above with 10% noise added on the
components, using a regular square grid with a
250-m sampling interval. For both anomalous
bodies, we added a random normal error with a
25-m standard deviation �corresponding to our
data set� on the x- and y-coordinates. The results
are almost identical to those obtained for regular
square grids. The �-parameters are slightly better
�approximately 0.01 greater� for test B than for
test A, which might indicate that in the examples
we studied, our method handles noise in coordi-
nates as noise in components. However, the dif-
ference is too small to be considered statistically
significant.
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Table B-1. Variations of the �-parameter, for a noise level equal to 10% of the
maximum peak-to-peak amplitude of the component for decreasing sampling
interval along the y-axis. The interval along the x-axis is constant (1 km).

� values �dx � 1 km�

Component
dy � 1000

m
dy � 500

m
dy � 250

m
dy � 125

m
dy � 62.5

m
dy � 31.25

m

Txx 0.55 0.76 0.85 0.90 0.92 0.93

Txy 0.78 0.83 0.89 0.94 0.96 0.97

Tyy 0.53 0.36 0.17 0.07 0.03 0.01

Txz 0.48 0.68 0.82 0.89 0.93 0.95

Tyz 0.50 0.26 0.13 0.06 0.03 0.01

gz 0.97 0.99 0.99 1.00 1.00 1.00

Table B-2. Variations of the �-parameter, for a noise level equal to 10% of the
maximum peak-to-peak amplitude of the component for decreasing sampling
interval along the x-axis. The interval along the y-axis is constant (1 km).

� values �dy � 1km�

Component
dx � 1000

m
dx � 500

m
dx � 250

m
dx � 125

m
dx � 62.5

m
dx � 31.25

m

Txx 0.55 0.34 0.16 0.07 0.02 0.01

Txy 0.78 0.82 0.89 0.94 0.96 0.97

Tyy 0.53 0.75 0.85 0.89 0.92 0.93

Txz 0.48 0.29 0.14 0.07 0.03 0.01

Tyz 0.50 0.67 0.80 0.88 0.92 0.94

gz 0.97 0.98 0.99 1.00 1.00 1.00
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