10 research outputs found

    Influence of a binder on the electrochemical behaviour of Si/RGO composite as negative electrode material for Li-ion batteries

    Get PDF
    Received: 02.12.2020. Accepted: 21.12.2020. Published:30.12.2020.A composite consisting of silicon nanoparticles and reduced graphene oxide nanosheets (Si/RGO) was studied as a promising material for the negative electrode of lithium-ion batteries. Commonly used polyvinylidene fluoride (PVdF) and carboxymethyl cellulose (CMC) served as a binder. To reveal the influence of the binder on the electrochemical behaviour of the Si/RGO composite, binder-free electrodes were also prepared and examined. Anode half-cells with composites comprising CMC as a binder demonstrated the best properties: capacity over 1200 mAhΒ·g–1, excellent cycling performance and good rate capability up to 1.0C.This work was performed with financial support from the Ministry of Science and Higher Education of Russian Federation, project ID RFMEFI60419X0235

    Temperature Dependence of Initial Permeability of NixCo1-xFe2O4 Ferrite System

    Get PDF
    The aim of this work was to create and study of ferrite nickel-cobalt powders, using sol-gel technology with participation of auto-combustion. Dependence of the initial permeability from the degree of substitution of cobalt cations on nickel cations is obtained. It is revealed that the crystallite size has a significant influence on the magnetic properties of the samples. With decreasing of crystallite size of nickel-cobalt ferrite Curie temperature decreases. It is shown that the smaller the particle size, the greater the thickness of the surface layer with significant violations of magnetic structure. Keywords: sol-gel technology, nickel-cobalt ferrite, initial permeability, Curie temperature

    SOLID ELECTROLYTE AND ELECTRODE-ACTIVATED MEMBRANE WITH ITS EMPLOYMENT

    Full text link
    FIELD: solid polymer ion conductors, namely, ion-conducting polymer electrolytes which can be used in electrochemical devices, specifically, in electrode-activated membranes. SUBSTANCE: given solid electrolyte contains copolymer based on acrylonitrile and butadiene carrying over 17.0 per cent by mass bonds of acrylonitrile or copolymer based on acrylonitrile and butadiene containing over 17.0 per cent by mass bonds of acrylonitrile and additionally under 5.0 per cent by mass of monomer residue of unsaturated carbonic acid. Solid electrolyte contains cobalt chloride (II) in the capacity of inorganic salt of metal with following proportion of components, molecular per cent,: copolymer of acrylonitrile and butadiene 99.00- 99.80; cobalt chloride (II) 0.20-1.00. Electrode-activated membrane includes layer of solid polymer electrolyte and metal current tap in which layer of solid polymer electrolyte has composition in mole per cent: copolymer of acrylonitrile and butadiene containing over 17.0 per cent by mass bonds of acrylonitrile or copolymer based on acrylonitrile and butadiene containing over 17 per cent by mass bonds of acrylonitrile and additionally containing under 5.0 per cent by mass monomeric residue of unsaturated carbonic acid - 99.00-99.80 and cobalt chloride (II) -0.20-1.00 and is 10- 150 mcm thick. Solid polymer electrolyte of proposed composition has conductance of the order of 10-8Ohm-1cm-1 and cobalt (II) detection limit 10-6mole/l. Proposed solid polymer electrolyte can be utilized in electrode-activated membrane showing good operational characteristics and simple design. EFFECT: development of solid polymer electrolyte to detect ions of cobalt and of electrode-activated membrane with its use. 2 cl, 2 dwg.Π˜Π·ΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΠ΅ относится ΠΊ области Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ², Π° ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΊ ΠΈΠΎΠ½-проводящим ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΌ элСктролитам, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² элСктрохимичСских устройствах, Π² частности Π² элСктродно-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°Ρ…. Π’Π²Π΅Ρ€Π΄Ρ‹ΠΉ элСктролит содСрТит сополимСр Π½Π° основС Π°ΠΊΡ€ΠΈΠ»ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° ΠΈ Π±ΡƒΡ‚Π°Π΄ΠΈΠ΅Π½Π°, содСрТащий Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 17 мас.% звСньСв Π°ΠΊΡ€ΠΈΠ»ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π°, ΠΈΠ»ΠΈ сополимСр Π½Π° основС Π°ΠΊΡ€ΠΈΠ»ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° ΠΈ Π±ΡƒΡ‚Π°Π΄ΠΈΠ΅Π½Π°, содСрТащий Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 17 мас.% звСньСв Π°ΠΊΡ€ΠΈΠ»ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π°, ΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 5 мас.% ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… остатков Π½Π΅ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Ρ… кислот, Π² качСствС нСорганичСской соли ΠΌΠ΅Ρ‚Π°Π»Π»Π° - Ρ…Π»ΠΎΡ€ΠΈΠ΄ ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° II ΠΏΡ€ΠΈ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ², ΠΌΠΎΠ».%: сополимСр Π°ΠΊΡ€ΠΈΠ»ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° ΠΈ Π±ΡƒΡ‚Π°Π΄ΠΈΠ΅Π½Π° 99,00-99,80, Ρ…Π»ΠΎΡ€ΠΈΠ΄ ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° II 0,20-1,00. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π½ΠΎ-активная ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π° содСрТит слой Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ элСктролита ΠΈ мСталличСский Ρ‚ΠΎΠΊΠΎΠΎΡ‚Π²ΠΎΠ΄, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ слой Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ элСктролита ΠΈΠΌΠ΅Π΅Ρ‚ состав, моль.%: сополимСр Π°ΠΊΡ€ΠΈΠ»ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° ΠΈ Π±ΡƒΡ‚Π°Π΄ΠΈΠ΅Π½Π°, содСрТащий Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 17 мас.% звСньСв Π°ΠΊΡ€ΠΈΠ»ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π°, ΠΈΠ»ΠΈ сополимСр Π½Π° основС Π°ΠΊΡ€ΠΈΠ»ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° ΠΈ Π±ΡƒΡ‚Π°Π΄ΠΈΠ΅Π½Π°, содСрТащий Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 17 мас.% звСньСв Π°ΠΊΡ€ΠΈΠ»ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° ΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ содСрТащий Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 5 мас.% ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… остатков Π½Π΅ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Ρ… кислот, 99,00?99,80 ΠΈ Ρ…Π»ΠΎΡ€ΠΈΠ΄ ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° II - 0,20?1,00, ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρƒ 10-150 ΠΌΠΊΠΌ. Π’Π²Π΅Ρ€Π΄Ρ‹ΠΉ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ элСктролит ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ состава ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ порядка 10-8 Ом-1‒см-1 ΠΈ ΠΏΡ€Π΅Π΄Π΅Π» обнаруТСния ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° II 10-6 моль/Π». ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹ΠΉ элСктролит ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован Π² элСктродно-Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰Π΅ΠΉ Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΌΠΈ Ρ€Π°Π±ΠΎΡ‡ΠΈΠΌΠΈ характСристиками, простой конструкции. ВСхничСским Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ изобрСтСния являСтся Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° состава Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ элСктролита для обнаруТСния ΠΈΠΎΠ½ΠΎΠ² ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ элСктродно-Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ с Π΅Π³ΠΎ использованиСм простой конструкции. 2 с. ΠΏ. Ρ„-Π»Ρ‹, 2 ΠΈΠ»

    Ion-exchange membrane materials: Properties, modification, and practical application

    No full text

    Membranes and nanotechnologies

    No full text

    Evaluation of the main processing parameters influencing the performance of poly(vinylidene fluoride – trifluorethylene) lithium ion battery separators

    No full text
    Poly(vinylidene fluoride – trifluorethylene) membranes are evaluated for lithium ion battery separator applications. Some of the main parameters affecting separator performance such as porosity, dehydration of lithium ions and processing technique (Li-ion uptake versus composite formation) are investigated. The polymer characteristics, as determined by infrared spectroscopy, do not change as a function of porosity, dehydration of lithium ions in the electrolyte solution or processing technique. The electrochemical impedance spectroscopy represented through the Nyquist plot, Bode plot and the ionic conductivity as a function of temperature, strongly depends on the aforementioned paramenters. The membrane that exhibits the highest ionic conductivity is a porous membrane without dehydration of lithium ions and prepared by the uptake technique. The performance of the membrane for battery applications are therefore strongly influenced both by porosity and processing technique.This work is funded by FEDER funds through the "Programa Operacional Factores de Competitividade – COMPETE" and by national funds by FCT- Fundação para a CiΓͺncia e a Tecnologia, project references Projects PTDC/CTM/69316/2006, project nΒΊF-COMP-01-0124-FEDER-022716 (refΒͺ FCT PEst-C/QUI/UI0686/2011) and NANO/NMed-SD/0156/2007, and grants SFRH/BD/68499/2010 (C.M.C) and SFRH/BPD/63148/2009 (V.S.). The authors thank Celgard, LLC for kindly supplying their high quality membranes. The authors also thank support from the COST Action MP1003, 2010 β€˜European Scientific Network for Artificial Muscles’
    corecore