121 research outputs found

    Mechanical properties of several newly produced RAFM steels with Tungsten content in the range of 2 wt%

    Get PDF
    The contribution of ENEA together with Rina-CSM to the Eurofusion programme \u201cWPMAT-Advanced Seels\u201d deals with the development of innovative RAFM steels able to withstand the critical temperatures typical of the different operational environments foreseen for the blanket of the first DEMO reactor. The optimization of the chemical composition and the Thermo Mechanical Treatment for these materials should be done according to the blanket operating temperatures that are related to two possible working conditions: the WCLL-BB (Water Cooled Lead Lithium Breeding Blanket) or the H(D)CLL-BB (Helium (Dual) Cooled Lead Lithium Breeding Blanket). On the one hand the \u201cwater-cooling\u201d option implies a minimum irradiation temperature for the blanket material in the range of 280\u2013350 \ub0C. On the other hand, the \u201chelium-cooled\u201d and the \u201cdual-coolant\u201d solutions imply an operating temperature for the blanket material in the range of 650 \ub0C. Therefore in the first case the target is the improvement of the toughness of the martensitic alloys; whilst concerning the second scenario the target is the development of more creep resistant martensitic steels, suitable to tolerate such a high operating temperature. In both the cases the Tungsten content plays a key role, both in terms of solid solution hardening and influence on the DBTT. Two alloys aimed at fulfilling the specifications for the two DEMO operating conditions, both with increased Tungsten content respect to Eurofer, have been produced and characterized. The mechanical properties of these two alloys are hereby reported and discussed

    Grain size reduction strategies on Eurofer

    Get PDF
    One of the options currently taken into account for the realization of the first DEMO reactor is the "water-cooled blanket". This option implies a minimum irradiation temperature for the blanket material in the range of 280–350 °C. In addition to the DBTT (Ductile to Brittle Transition Temperature) shift due to the DPA (displacement per atom) damage under irradiation, also the issue of the increased embrittlement due to He production must be taken into account. This issue appears even more detrimental and less manageable because the DBBT shift due to the Helium production does not saturate with the dose, as it results from previous works reported in literature. The experimental results and the difference in behaviour between ODS (Oxide Dispersion Strengthened Steels) RAFM (Reduced Activation Ferritic Martensitic) and other FM (Ferritic Martensitic) alloys (EM10, P91) showed that it is possible to improve the resistance to He embrittlement by both intra-granular precipitation of Y-Ti oxides and by decreasing the grain size at the same time. Nevertheless, anyway, the multiplication of the grain boundaries increases the dilution of He on grain surface, delaying the formation of He bubbles on grain boundaries and, therefore, the susceptibility to the He embrittlement. Several grain size reduction strategies have then been investigated on EUROFER both at the austenitization stage, on the PAGS (Prior Austenite Grain Size), and at the tempering stage, on the tempered martensite. The microstructural observations have been carried out by means of SEM (Scanning Electron Microscopy). Also the effect of grain size reduction on the toughness of the material will be taken into account; The DBTTs resulting from impact tests on KLST specimens will be shown. The outcomes of the microstructural observations, as well as the preliminary mechanical characterization (impact tests) will be discussed in this paper. Keywords: EUROFER 97, RAFM steels, Microstructure, Multiple normalization, Asymmetric rolling, Recrystallization, KLS

    Development of innovative materials and thermal treatments for DEMO water cooled blanket

    Get PDF
    One of the options currently taken into account for the realization of the first DEMO reactor is the "water-cooled lanket". This option implies an irradiation temperature for the blanket material in the range of 280–350 °C. Therefore, in light of the under irradiation behaviour of EUROFER, namely of the DBTT shift toward high temperature due to the low irradiation temperature embrittlement, the target of the hereby reported activities is the development of much tougher alloys, to try to tolerate the embrittlement due to the low irradiation temperature. We report in this paper the work done to optimize the toughness of Eurofer 97, increasing the normalizing temperature and maintaining a small grain size using multiple normalizing treatments. We report also the mechanical behaviour of two 9Cr1WTa type alloys, produced and tested with the same aim to find alloys more resistant to embrittlement at low irradiation temperature. Keywords: EUROFER 97, RAFM steels, Microstructure, Heat treatment, Tensile, Charpy, KLS

    Development of innovative steels and thermo-mechanical treatments for DEMO high operating temperature blanket options

    Get PDF
    Among the options currently taken into account for the realization of the first DEMO reactor there are the "helium-cooled" and the "dual coolant" breeding blanket. Therefore the high temperature (650 °C) behavior of the proposed innovative martensitic alloys should be improved, namely the frame of the hereby reported activities is the development of martensitic alloys more resistant to creep, suitable to tolerate such a high operating temperature. In order to improve the high temperature mechanical properties, concerning the alloy design strategies, two alternative routes are proposed; the effect of Nitrogen and Tungsten increase are taken into account as well as the addition of carbo-nitride forming elements, like Vanadium, combined with the "ausforming" thermo-mechanical treatments. Two alloys have been designed and a special thermo-mechanical treatment on Eurofer 97-2 is proposed. The "ausforming" treatment, consisting in a sort of hot-working at a lower temperature with respect to the austenitization one after the austenitization stage, is aimed at the achievement of a beneficial dislocation "pinning" at high temperature due to carbide precipitation. Generally the improvement of tensile properties is associated to the hardening of the steel due to dislocation network and precipitation effects. This hardening is accompanied by a DBTT increase to markedly higher values with respect to Standard Eurofer. The proposed materials should be, in any case, at least room temperature ductile in order to undergo safe manufacturing and assembling processes. Therefore the issue of the DBTT increase has been taken into account by tuning the tempering temperature adequately. The two variations from chemical composition of Eurofer 97 have been casted and the thermo-mechanical treatments have been selected by means of SEM and hardness measurements to tune grain size and precipitation of carbides. The outcomes of the preliminary mechanical characterization (tensile, creep and impact tests) will be discussed in this paper. Keywords: EUROFER 97, RAFM steels, Thermo-mechanical treatment, Ausforming, Tensile, Creep, Charp

    Characterisation of microstructure and creep properties of alloy 617 for high-temperature applications

    Get PDF
    Current energy drivers are pushing research in power generation materials towards improved efficiency and improved environmental impact. In the context of new generation ultra-supercritical (USC) power plant, this is represented by increased efficiency, service temperature reaching 750. °C, pressures in the range of 35-37.5. MPa and associated carbon capture technology. Ni base alloys are primary candidate materials for long term high temperature applications such as boilers. The transition from their current applications, which have required lower exposure times and milder corrosive environments, requires the investigation of their microstructural evolution as a function of thermo-mechanical treatment and simulated service conditions, coupled with modelling activities that are able to forecast such microstructural changes. The lack of widespread microstructural data in this context for most nickel base alloys makes this type of investigation necessary and novel. Alloy INCONEL 617 is one of the Ni-base candidate materials. The microstructures of four specimens of this material crept at temperatures in the 650-750. °C range for up to 20,000. h have been characterised and quantified. Grain structure, precipitate type and location, precipitate volume fraction, size and inter-particle spacing have been determined. The data obtained are used both as input for and validation of a microstructurally-based CDM model for forecasting creep properties

    THERMODYNAMIC MODELLING TO SUPPORT PRODUCTION OF HIGH NITROGEN STEELS BY DIFFERENT PROCESSES

    Get PDF
    High Nitrogen Stainless Steel (HNSS) have a high potential for several applications due to their attractive properties: by varying the range of composition of the steel, metallurgists are exploying these materials for many important applications. Actually, there are some processing routes available: the most part of the world production of HNSS is made by electric plus AOD for low-medium content of N and by PESR for high content of nitrogen The main criticality that can be encountered during the solidification of high nitrogen steels is the formation of gas bubbles due to supersaturation of nitrogen in the melt, that induces porosity in the final macrostructure. Therefore, tools for prediction of solidification behaviour of HNSS under different casting conditions, are required to prevent defectiveness due to pores in the final products. In the present work, a simple microsegregation model interfaced with Thermocalc has been implemented, which allows to predict the conditions for gas nucleation during solidification. This model has been validated by comparison with experimental results of solidification of different HNSS grades in conditions variable from vacuum to high pressure, and represents an useful tool to support HNSS industrial production

    Ideal hierarchical secret sharing schemes

    Get PDF
    Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention from the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization deals with the properties of the hierarchically minimal sets of the access structure, which are the minimal qualified sets whose participants are in the lowest possible levels in the hierarchy. By using our characterization, it can be efficiently checked whether any given hierarchical access structure that is defined by its hierarchically minimal sets is ideal. We use the well known connection between ideal secret sharing and matroids and, in particular, the fact that every ideal access structure is a matroid port. In addition, we use recent results on ideal multipartite access structures and the connection between multipartite matroids and integer polymatroids. We prove that every ideal hierarchical access structure is the port of a representable matroid and, more specifically, we prove that every ideal structure in this family admits ideal linear secret sharing schemes over fields of all characteristics. In addition, methods to construct such ideal schemes can be derived from the results in this paper and the aforementioned ones on ideal multipartite secret sharing. Finally, we use our results to find a new proof for the characterization of the ideal weighted threshold access structures that is simpler than the existing one.Peer ReviewedPostprint (author's final draft

    Efficient Explicit Constructions of Multipartite Secret Sharing Schemes

    Get PDF
    Multipartite secret sharing schemes are those having a multipartite access structure, in which the set of participants is divided into several parts and all participants in the same part play an equivalent role. Secret sharing schemes for multipartite access structures have received considerable attention due to the fact that multipartite secret sharing can be seen as a natural and useful generalization of threshold secret sharing. This work deals with efficient and explicit constructions of ideal multipartite secret sharing schemes, while most of the known constructions are either inefficient or randomized. Most ideal multipartite secret sharing schemes in the literature can be classified as either hierarchical or compartmented. The main results are the constructions for ideal hierarchical access structures, a family that contains every ideal hierarchical access structure as a particular case such as the disjunctive hierarchical threshold access structure and the conjunctive hierarchical threshold access structure, the constructions for three families of compartmented access structures, and the constructions for two families compartmented access structures with compartments. On the basis of the relationship between multipartite secret sharing schemes, polymatroids, and matroids, the problem of how to construct a scheme realizing a multipartite access structure can be transformed to the problem of how to find a representation of a matroid from a presentation of its associated polymatroid. In this paper, we give efficient algorithms to find representations of the matroids associated to several families of multipartite access structures. More precisely, based on know results about integer polymatroids, for each of those families of access structures above, we give an efficient method to find a representation of the integer polymatroid over some finite field, and then over some finite extension of that field, we give an efficient method to find a presentation of the matroid associated to the integer polymatroid. Finally, we construct ideal linear schemes realizing those families of multipartite access structures by efficient methods
    • …
    corecore