1,040 research outputs found
Semiconductor resonator solitons above band gap
We show experimentally the existence of bright and dark spatial solitons in
semiconductor resonators for excitation above the band gap energy. These
solitons can be switched on, both spontaneously and with address pulses,
without the thermal delay found for solitons below the band gap which is
unfavorable for applications. The differences between soliton properties above
and below gap energy are discussed.Comment: 4 pages, 7 figure
Spatial semiconductor-resonator solitons
We demonstrate experimentally and numerically the existence spatial solitons
in multiple-quantum-well semiconductor microresonators driven by an external
coherent optical field. We discuss stability of the semiconductor-resonator
solitons over a wide spectral range around the band edge. We demonstrate the
manipulation of such solitons: switching solitons on and off by coherent as
well as incoherent light; reducing the light power necessary to sustain and
switch a soliton, by optical pumping.Comment: 10 pages, 20 figure
Spatial Resonator Solitons
Spatial solitons can exist in various kinds of nonlinear optical resonators
with and without amplification. In the past years different types of these
localized structures such as vortices, bright, dark solitons and phase solitons
have been experimentally shown to exist. Many links appear to exist to fields
different from optics, such as fluids, phase transitions or particle physics.
These spatial resonator solitons are bistable and due to their mobility suggest
schemes of information processing not possible with the fixed bistable elements
forming the basic ingredient of traditional electronic processing. The recent
demonstration of existence and manipulation of spatial solitons in emiconductor
microresonators represents a step in the direction of such optical parallel
processing applications. We review pattern formation and solitons in a general
context, show some proof of principle soliton experiments on slow systems, and
describe in more detail the experiments on semiconductor resonator solitons
which are aimed at applications.Comment: 15 pages, 32 figure
Patterns and localized structures in bistable semiconductor resonators
We report experiments on spatial switching dynamics and steady state
structures of passive nonlinear semiconductor resonators of large Fresnel
number. Extended patterns and switching front dynamics are observed and
investigated. Evidence of localization of structures is given.Comment: 5 pages with 9 figure
Second virial coefficients of light nuclear clusters and their chemical freeze-out in nuclear collisions
Here we develop a new strategy to analyze the chemical freeze-out of light
(anti)nuclei produced in high energy collisions of heavy atomic nuclei within
an advanced version of the hadron resonance gas model. It is based on two
different, but complementary approaches to model the hard-core repulsion
between the light nuclei and hadrons. The first approach is based on an
approximate treatment of the equivalent hard-core radius of a roomy nuclear
cluster and pions, while the second approach is rigorously derived here using a
self-consistent treatment of classical excluded volumes of light (anti)nuclei
and hadrons. By construction, in a hadronic medium dominated by pions, both
approaches should give the same results. Employing this strategy to the
analysis of hadronic and light (anti)nuclei multiplicities measured by ALICE at
TeV and by STAR at GeV, we got rid
of the existing ambiguity in the description of light (anti)nuclei data and
determined the chemical freeze-out parameters of nuclei with high accuracy and
confidence. At ALICE energy the nuclei are frozen prior to the hadrons at the
temperature MeV, while at STAR energy there is a
single freeze-out of hadrons and nuclei at the temperature
MeV. We argue that the found chemical freeze-out volumes of nuclei can be
considered as the volumes of quark-gluon bags that produce the nuclei at the
moment of hadronization.Comment: 15 pages, 4 figures, 3 table
Has the QCD Critical Point been Signaled by Observations at RHIC ?
The shear viscosity to entropy ratio () is estimated for the hot and
dense QCD matter created in Au+Au collisions at RHIC ( GeV).
A very low value is found , which is close to the conjectured
lower bound (). It is argued that such a low value is indicative of
thermodynamic trajectories for the decaying matter which lie close to the QCD
critical end point.Comment: 4 pages, 3 figures. Revised version, accepted for publication in PR
Dark polariton-solitons in semiconductor microcavities
We report the existence, symmetry breaking and other instabilities of dark
polariton-solitons in semiconductor microcavities operating in the strong
coupling regime. These half-light half-matter solitons are potential candidates
for applications in all-optical signal processing. Their excitation time and
required pump powers are a few orders of magnitude less than those of their
weakly coupled light-only counterparts.Comment: submitted to PR
- …
