499 research outputs found

    Natural attenuation of Fukushima-derived radiocesium in soils due to its vertical and lateral migration

    Get PDF
    Processes of vertical and lateral migration lead to gradual reduction in contamination of catchment soil, particularly its top layer. The reduction can be considered as natural attenuation. This, in turn, results in a gradual decrease of radiocesium activity concentrations in the surface runoff and river water, in both dissolved and particulate forms. The purpose of this research is to study the dynamics of Fukushima-derived radiocesium in undisturbed soils and floodplain deposits exposed to erosion and sedimentation during floods. Combined observations of radiocesium vertical distribution in soil and sediment deposition on artificial lawn-grass mats on the Niida River floodplain allowed us to estimate both annual mean sediment accumulation rates and maximum sedimentation rates corresponding to an extreme flood event during Tropical Storm Etau, 6-11 September 2015. Dose rates were reduced considerably for floodplain sections with high sedimentation because the top soil layer with high radionuclide contamination was eroded and/or buried under cleaner fresh sediments produced mostly due to bank erosion and sediments movements. Rate constants of natural attenuation on the sites of the Takase River and floodplain of Niida River was found to be in range 0.2-0.4 year-1. For the site in the lower reach of the Niida River, collimated shield dose readings from soil surfaces slightly increased during the period of observation from February to July 2016. Generally, due to more precipitation, steeper slopes, higher temperatures and increased biological activities in soils, self-purification of radioactive contamination in Fukushima associated with vertical and lateral radionuclide migration is faster than in Chernobyl. In many cases, monitored natural attenuation along with appropriate restrictions seems to be optimal option for water remediation in Fukushima contaminated areas

    Survey for Emission-Line Galaxies: Universidad Complutense de Madrid List 3

    Get PDF
    A new low-dispersion objective-prism search for low-redshift (z<0.045) emission-line galaxies (ELG) has been carried out by the Universidad Complutense de Madrid with the Schmidt Telescope at the Calar-Alto Observatory. This is a continuation of the UCM Survey, which was performed by visual selection of candidates in photographic plates via the presence of the Halpha+[NII]6584 blend in emission. In this new list we have applied an automatic procedure, fully developed by us, for selecting and analyzing the ELG candidates on the digitized images obtained with the MAMA machine. The analyzed region of the sky covers 189 square degrees in nine fields near R.A.=14h & 17h, Dec=25 deg. The final sample contains 113 candidates. Special effort has been made to obtain a large amount of information directly from our uncalibrated plates by using several external calibrations. The parameters obtained for the ELG candidates allow for the study of the statistical properties for the sample.Comment: 13 pages, 18 PostScript figures, 6 JPEG figures, Table 2 corrected. Accepted for publication in Astrophysical Journal Supplements, also available at http://www.ucm.es/info/Astrof/opera/LIST3_ApJS99

    Invariant Form of Hyperfine Interaction with Multipolar Moments - Observation of Octupolar Moments in NpO2_{2} and CeB6_{6} by NMR -

    Full text link
    The invariant form of the hyperfine interaction between multipolar moments and the nuclear spin is derived, and applied to discuss possibilities to identify the antiferro-octupolar (AFO) moments by NMR experiments. The ordered phase of NpO2_{2} and the phase IV of Ce1x_{1-x}Lax_{x}B6_{6} are studied in detail. Recent 17^{17}O NMR for polycrystalline samples of NpO2_{2} are discussed theoretically from our formulation. The observed feature of the splitting of 17^{17}O NMR spectrum into a sharp line and a broad line, their intensity ratio, and the magnetic field dependence of the shift and of the width can be consistently explained on the basis of the triple \bq AFO ordering model proposed by Paix\~{a}o {\it et. al.} Thus, the present theory shows that the 17^{17}O NMR spectrum gives a strong support to the model. The 4 O sites in the fcc NpO2_2 become inequivalent due to the secondary triple \bq ordering of AF-quadrupoles: one cubic and three non-cubic sites. It turns out that the hyperfine field due to the antiferro-dipole and AFO moments induced by the magnetic field, and the quadrupolar field at non-cubic sites are key ingredients to understand the observed spectrum. The controversial problem of the nature of phase IV in Ce1x_{1-x}Lax_{x}B6_{6} is also studied. It is pointed out that there is a unique feature in the NMR spectra, if the Γ5\Gamma_{5}(Txβ=Tyβ=TzβT^{\beta}_{x}=T^{\beta}_{y}=T^{\beta}_{z}) AFO ordering is realized in Ce1x_{1-x}Lax_{x}B6_{6}. Namely, the hyperfine splitting of a B atom pair on the (1/2,1/2,±u)({1/2},{1/2},\pm u) sites crosses zero on the (11ˉ0)(1\bar{1}0) plane when the magnetic field is rotated around the [001][001] axis.Comment: 22 pages, 2 figure

    Commissioning Process and Operational Improvement in the District Heating and Cooling-APCBC

    Get PDF

    Optical Identification of the ASCA Large Sky Survey

    Get PDF
    We present results of optical identification of the X-ray sources detected in the ASCA Large Sky Survey. Optical spectroscopic observations were done for 34 X-ray sources which were detected with the SIS in the 2-7 keV band above 3.5 sigma. The sources are identified with 30 AGNs, 2 clusters of galaxies, and 1 galactic star. Only 1 source is still unidentified. The flux limit of the sample corresponds to 1 x 10^{-13} erg s^{-1} cm^{-2} in the 2-10 keV band. Based on the sample, the paper discusses optical and X-ray spectral properties of the AGNs, contribution of the sources to the Cosmic X-ray Background, and redshift and luminosity distributions of the AGNs. An interesting result is that the redshift distribution of the AGNs suggests a deficiency of high-redshift (0.5 10^{44} erg s^{-1}) absorbed narrow-line AGNs (so called type 2 QSOs).Comment: Accepted for publication in ApJ. 57 pages with 13 figures, 9 JPG plates, 5 additional PS tables. Original EPS plates (gzipped format ~1Mbyte/plate) and TeX tables are available from ftp://ftp.kusastro.kyoto-u.ac.jp/pub/akiyama/0001289

    Study of the structure and kinematics of the NGC 7465/64/63 triplet galaxies

    Full text link
    This paper is devoted to the analysis of new observational data for the group of galaxies NGC 7465/64/63, which were obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) with the multimode instrument SCORPIO and the Multi Pupil Fiber Spectrograph. For one of group members (NGC 7465) the presence of a polar ring was suspected. Large-scale brightness distributions, velocity and velocity dispersion fields of the ionized gas for all three galaxies as well as line-of-sight velocity curves on the basis of emission and absorption lines and a stellar velocity field in the central region for NGC 7465 were constructed. As a result of the analysis of the obtained information, we revealed an inner stellar disk (r ~ 0.5 kpc) and a warped gaseous disk in addition to the main stellar disk, in NGC 7465. On the basis of the joint study of photometric and spectral data it was ascertained that NGC 7464 is the irregular galaxy of the IrrI type, whose structural and kinematic peculiarities resulted most likely from the gravitational interaction with NGC 7465. The velocity field of the ionized gas of NGC 7463 turned out typical for spiral galaxies with a bar, and the bending of outer parts of its disk could arise owing to the close encounter with one of galaxies of the environment.Comment: 20 pages, 6 figure

    The Period Changes of the Cepheid RT Aurigae

    Full text link
    Observations of the light curve for the 3.7-day Cepheid RT Aur both before and since 1980 indicate that the variable is undergoing an overall period increase, amounting to +0.082 +-0.012 s/yr, rather than a period decrease, as implied by all observations prior to 1980. Superposed on the star's O-C variations is a sinusoidal trend that cannot be attributed to random fluctuations in pulsation period. Rather, it appears to arise from light travel time effects in a binary system. The derived orbital period for the system is P = 26,429 +-89 days (72.36 +-0.24 years). The inferred orbital parameters from the O-C residuals differ from those indicated by existing radial velocity data. The latter imply the most reasonable results, namely a1 sin i = 9.09 (+-1.81) x 10^8 km and a minimum secondary mass of M2 = 1.15 +-0.25 Msun. Continued monitoring of the brightness and radial velocity changes in the Cepheid are necessary to confirm the long-term trend and to provide data for a proper spectroscopic solution to the orbit.Comment: Accepted for publication in PASP (November 2007
    corecore