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Abstract.  21 

Processes of vertical and lateral migration lead to gradual reduction in contamination of catchment 22 

soil, particularly its top layer. The reduction can be considered as natural attenuation. This, in turn, 23 

results in a gradual decrease of radiocesium activity concentrations in the surface runoff and river 24 

water, in both dissolved and particulate forms. The purpose of this research is to study the 25 

dynamics of Fukushima-derived radiocesium in undisturbed soils and floodplain deposits exposed 26 

to erosion and sedimentation during floods. Combined observations of radiocesium vertical 27 

distribution in soil and sediment deposition on artificial lawn-grass mats on the Niida River 28 

floodplain allowed us to estimate both annual mean sediment accumulation rates and maximum 29 

sedimentation rates corresponding to an extreme flood event during Tropical Storm Etau, 6-11 30 

September 2015. Dose rates were reduced considerably for floodplain sections with high 31 

sedimentation because the top soil layer with high radionuclide contamination was eroded and/or 32 

buried under cleaner fresh sediments produced mostly due to bank erosion and sediments 33 

movements. Rate constants of natural attenuation on the sites of the Takase River and floodplain 34 

of Niida River was found to be in range 0.2-0.4 year-1. For the site in the lower reach of the Niida 35 

River, collimated shield dose readings from soil surfaces slightly increased during the period of 36 

observation from February to July 2016. Generally, due to more precipitation, steeper slopes, 37 

higher temperatures and increased biological activities in soils, self-purification of radioactive 38 

contamination in Fukushima associated with vertical and lateral radionuclide migration is faster 39 

than in Chernobyl. In many cases, monitored natural attenuation along with appropriate 40 

restrictions seems to be optimal option for water remediation in Fukushima contaminated areas.  41 

 42 

 43 

  44 
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1. Introduction 45 

Post-Chernobyl experience has shown that the remediation of radioactively contaminated 46 

land should be focused on low cost, low intensity “passive” or low maintenance solutions rather 47 

than intrusive, and usually expensive, engineering techniques (IAEA, 2006a; Beresford et al., 48 

2016). Monitored natural attenuation is an example of such “passive” remediation options relying 49 

on natural processes that reduce the flux of radionuclides towards any given receptor (IAEA, 50 

2006b). Processes of natural attenuation do not reduce the total amount of radionuclides in the 51 

environment, rather they affect radionuclide distribution over space and time. Physical processes 52 

involved in natural attenuation (advection, diffusion, dispersion) may dilute radionuclides in the 53 

environment or partially remove/relocate and spread them (wash-off, erosion and sedimentation) 54 

(WMO-754, 1992). 55 

On the one hand, contaminated catchments after Fukushima Daiichi Nuclear Power Plant 56 

(FDNPP) become a long-term source of secondary contamination of surface waters (rivers and 57 

lakes) due to radionuclide wash-off by surface runoff, both in dissolved and particulate state. 58 

Vertical migration of radionuclide in soil leads to contamination of deeper soil layers and 59 

penetration of radionuclides to groundwater. On the other hand, processes of vertical and lateral 60 

migration lead to gradual reduction in contamination of catchment soil, particularly its top layer 61 

(Konoplev et al., 1992; Ivanov et al., 1997; Mishra et al., 2016; Konoplev et al., 2016a). This, in 62 

turn, results in a gradual decrease of radionuclide concentrations in the both dissolved and 63 

particulate forms of surface runoff and river water (IAEA, 2006c; Bulgakov et al., 2002). 64 

Climate and geographical conditions may essentially influence the rate of natural attenuation 65 

processes. In contrast to Chernobyl, Fukushima’s watersheds are hilly with steep slopes. Annual 66 

precipitation also differs substantially, with annual averages of about 1500 mm/year for 67 

Fukushima according to the Japan Meteorological Agency and about 600 mm/year at Chernobyl 68 

(Konoplev et al., 2016a).  69 
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The fate and transport of accidentally released radiocesium is governed by the ratio of its 70 

chemical forms in fallout and site-specific environmental characteristics determining the rates of 71 

leaching, fixation-remobilization, as well as sorption-desorption of the mobile fraction (its solid-72 

liquid distribution) (Konoplev et al., 1992; Beresford et al., 2016). Radiocesium in the 73 

environment is strongly bound to soil and sediment particles containing micaceous clay minerals 74 

(illite, vermiculite etc.). This is due to two basic processes: high selective reversible sorption and 75 

fixation (Konoplev & Konopleva, 1999). The proportion of clays is relatively high and reaches up 76 

to 30% in Fukushima soils, which is essentially higher than in soils of the Chernobyl zone. There 77 

still seems to be no clear understanding of radiocesium speciation in the Fukushima fallout. 78 

Adachi et al., 2013 and Abe et al., 2015 have revealed water insoluble spherical glassy aerosol 79 

particles greater than 2 μm in diameter, as far as 170 km from the FDNPP, containing, apart from 80 

radiocesium, uranium and other elements representative of fuel and reactor materials. Particles of 81 

similar properties have also been identified by Niimura et al., 2015 using autoradiography of soils, 82 

plants and mushrooms.  83 

After deposition of radionuclides on the ground surface, over time the contamination 84 

migrates down through the soil profile. The dynamic pattern of vertical distribution of 85 

radionuclides in soil is critical from the standpoint of external dose rate, availability of 86 

radionuclides for transfer to surface runoff and wind resuspension in the boundary atmospheric 87 

layer, availability of radionuclides for root uptake by plants and percolation to groundwater. 88 

Radionuclides migrate vertically in solution and as colloids with infiltration water flow, or 89 

attached to fine soil particles (Bulgakov et al., 1991; Konoplev et al., 1992; Bossew & Kirchner, 90 

2004; Mishra et al., 2016). Transport of radiocesium in solution by infiltration is slower than the 91 

water flow because of sorption-desorption and fixation on soil particles. Fine soil particles 92 

containing radiocesium can move by penetrating through pores, cracks and cavities, as well as 93 

with infiltration flow (lessivage), and as a result of vital activity of plants and biota (bioturbation) 94 

(Bulgakov et al., 1991; Konoplev et al., 2016b). Nevertheless, the vertical migration of 95 
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radionuclides in soils unaffected by erosion-accumulation processes can be described by the 96 

convection-dispersion equation using the effective values of dispersion coefficient and convective 97 

velocity (Konoplev & Golubenkov, 1991; Konshin, 1992). 98 

It is even more challenging to describe radiocesium vertical distribution in soil for the sites 99 

with obvious accumulation or loss of soil material as a result of erosion-sedimentation processes, 100 

for example, on cultivated slopes or river floodplains. In this case, erosion and/or sedimentation 101 

processes have a significant impact on the vertical distribution of radiocesium in soil profile 102 

(Walling, 1998; Golosov et al., 2013; Konoplev et al., 2016a; Mamikhin et al., 2016).  103 

Floodplain formation dynamics is primarily influenced by deformation of river channels, 104 

sediment transport and load (Schumm, 1985; Lewin, 1978). These, in turn, are governed by 105 

hydrological and geomorphological factors, including flood magnitude and frequency, intensity of 106 

erosion processes within the drainage area, structure and density of the fluvial net, the grain size 107 

composition of the transported sediment, channel morphology and dynamics, width and gradient 108 

of the valley floor, and the geological composition of the alluvial valley fill (Blake and Ollier, 109 

1971; Nanson and Croke, 1992; Moody and Troutman, 2000). The main sources of sediments for 110 

river basins draining alpine territories with highly forested slopes are mass movement and linear 111 

erosion (Wasson and Claussen, 2002; Poesen et al., 2003). Processes of sediment lateral 112 

movement on the river bottom include lateral migration, avulsion, meander cutoffs, and channel 113 

switching (Nanson and Beach, 1977; O'Connor et al., 2003). The river erodes some sections of 114 

floodplain each year, while other sections accrete sediment and gradually rise in elevation above 115 

the river bed due to sedimentation (Salo et al., 1986; Hughes, 1997). Quantitative information on 116 

floodplain sedimentation rates for short time intervals is limited to several cross-sections or even a 117 

single key site (Walling & Bradley, 1989; Ritchie et al., 2004; Mizugaki et al., 2006; Knox, 2006; 118 

Golosov, 2009; Golosov et al.,2010). 119 
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The purpose of this work is to study dynamics of Fukushima-derived radiocesium in 120 

undisturbed soils and floodplain deposits exposed to erosion and sedimentation during floods and 121 

estimate the rates of natural attenuation due to radiocesium vertical and lateral migration. 122 

 123 

2. Material and methods 124 

2.1.Study area 125 

The area contaminated after the accident at FDNPP is characterized by a monsoon climate 126 

with annual precipitation varying in range from 1100 to 1800 mm/year during 2011-2016 127 

according to the data from five meteorological stations of Japan Meteorological Agency 128 

(http://www.data.jma.go.jp/gmd/risk/obsdl/) – Haramachi, Iitate, Namie, Tsushima and Tomioka 129 

located in contaminated areas. Maximum precipitation occurs during the typhoon season (mid-130 

August - October) and rainy season (late May – mid-July). Temperatures are representative of the 131 

monsoon climate with mild winters: the mean monthly values being above zero and with hot, 132 

rainy summers. There are actually no periods with soil freezing and, together with large amounts 133 

of precipitation in the summer and relatively high average annual air temperature, this should 134 

facilitate vertical radiocesium migration in soils (Konoplev et al., 2016a).   135 

Soil diversity in the Fukushima-contaminated areas is great due to the combination of 136 

mountain rocks of different lithological composition, intense weathering and denudation from 137 

high seismicity, and the steep inclination of mountain slopes. The interfluve areas include brown 138 

soils (under beech forest), ashy-volcanic, rich in humus, acidic allophonic (andosol) and leached 139 

brown soils. The valley’s bottoms are mainly used as paddy fields and are represented by alluvial 140 

soils strongly modified because of many years of land use. Undisturbed alluvial soils occur on the 141 

leveed parts of river valley bottoms and along the canalized parts of stream channels typical of 142 

intermountain depressions. The arable lands, mainly paddy fields, occupy about 12% of the total 143 

territory in the region, and occur primarily on extensive depressions and piedmont lowland.  144 

http://www.data.jma.go.jp/gmd/risk/obsdl/
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Fig. 1A shows the study areas and radiocesium deposition based on the results of the 145 

seventh airborne monitoring survey, as of 28 September 2013, (NRA, 2013). Two sampling areas 146 

selected for study in the contamination zone were previously described (Konoplev et al., 2016a) - 147 

Okuma town and Niida River catchment. One more research area to study dynamics of dose rates 148 

was located on the lower parts of a steep slopes of the Takase River catchment in heavily 149 

contaminated mixed forest nearby Namie town.  150 

Seven cross-sections for sampling and sediment traps installation were selected on the Niida 151 

River floodplain (Fig. 1B). One cross-section characterized the headwaters of the Hiso River basin 152 

upstream of its most polluted part (site N7). Three cross-sections integrate the 137Cs concentration 153 

in sediments delivered from headwaters of the main uplands rivers (Upper Niida, Iitoi and Hiso, 154 

sites N4, N5 and N6 respectively). Two cross-sections are in lower reaches of the Niida River 155 

(sites N1 and N2). Site N3 is selected for integration of 137Cs concentration in sediments 156 

transported from both the Iitoi and the Upper Niida Rivers at the boundary between headwaters 157 

uplands and mid-basin rangelands. 158 

Cores of undisturbed soils have been taken from intact areas of Suzuuchi (S), Funasawa (F) 159 

and Inkyozaka (I) pond catchments covered with shrubs and grass. The fourth sampling site was 160 

on the forest slope near the pond Kashiramori (K) (Fig. 1C).  161 

The sampling site location was determined with GPS GARMIN Oregon 550TC. 162 

2.2.Soil core sampling 163 

Soil cores were collected to a depth of 30 cm using a liner sampler DIK-110C (DAIKI, 164 

Japan: www.daiki.co.jp) with a plastic cylinder insert of 5 cm diameter. The soil cores were sliced 165 

into layers 1 to 5 cm thick, depending on layer position, soil density and friability. The upper soil 166 

layers were 1-3 cm thick, and the lower layers were 2-5 cm thick. The cores were sampled from 167 

April to August 2014, in April 2015 and from June to August 2016 (Table 1). Soil samples were 168 

dried at 50оС for at least 3 days, then ground and homogenized on a mortar.  169 

 170 

http://www.daiki.co.jp/
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2.3.Application of artificial lawn-grass mats (ALGM) 171 

Square-shaped ALGM (0.46×0.46 m2) were placed on various levels of floodplain surface 172 

within each cross-section if possible in the second half of July 2014 just before the typhoon 173 

season. The synthetic grass-lawn had bristles 1.5 cm high to simulate roughness of natural grass 174 

cover and to trap sediment. Installation involved natural grass cutting and fixation of ALGM by 175 

several steel wire cramps to ensure that the surface was carefully levelled with the surrounding 176 

natural grass. Mats were replaced by new ones during the first half of April 2015 after the 177 

snowmelt had completed. Therefore, ALGM were exposed to natural sedimentation processes on 178 

the Niida River floodplain for two separate periods: first, from July 2014 to April 2015 covering 179 

the 2014 typhoon season, and second from April 2015 to July 2015 covering the 2015 rainy 180 

season. The thickness of deposited sediment layers on ALGM surface were measured prior to 181 

removal. After being removed and delivered to the lab, sediments were rinsed out by tap water and 182 

dried, then the total weight of deposits was measured, and the total sediment and radiocesium 183 

deposition were calculated. The 137Cs and 134Cs concentrations were determined for each sample. 184 

This technique was successfully applied to study sediment deposition in different floodplains 185 

(Lambert & Walling, 1987; Middelkoop, 1995; Baborowski et al., 2007). 186 

2.4.Sample preparation and particle size analysis 187 

Samples of soils and sediments were dried at 60oC for several days until a constant weight. 188 

Then, material was softly crushed using a mortar until complete homogenization of the sample 189 

was achieved. Particle size fractions of deposited sediments on ALGM and soils were separated by 190 

sieving with sieves of 0.063; 0.1; 0.5; 1.0 and 2.0 mm mesh. Weight of sediments on each sieve 191 

were measured and then weight proportions were obtained. For smaller samples such as individual 192 

layers of soil/sediment cores the laser diffraction particle size analyzer (MASTERSIZER 3000, 193 

Malvern Instruments, Ltd., UK) has been used. 194 

 195 

 196 
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2.5.Dose rate measurements 197 

Air dose rates at 1 m height were determined at all sites using an ALOKA pocket survey 198 

meter PDR-111. A portable gamma spectrometry system in a backpack configuration (Cresswell 199 

et al., 2013, 2016; Sanderson et al. 2016) had been deployed to measure dose rates and 200 

radiocaesium deposition in forests around the Takase River on 10 April and 18 May 2015. 201 

Measurements with this system were repeated at the T1 and T2 sites (Fig. 1A) on 19 October 2015. 202 

D-shuttle dosimeters (Chiyoda Technol Corp., Japan) were used to collect hourly cumulative 203 

gamma-ray doses at sites in the Takase river catchment and Niida river floodplain. These 204 

dosimeters employ semi-conductor technology using a Si-PIN diode (size of 1.2 cm×1.4 cm) as 205 

the gamma-detector, and are encased in a lead collimated shield (3 cm thick on the top, 3 cm thick 206 

of the sidewall and 2 cm thick of the underside) with a 3 cm×3 cm collimation window in the 207 

underside shield opposite the diode. These devices record hourly dose rates inside the collimator, 208 

which correlate to the surface dose rate from spots of soil surface (with a diameter approximately 209 

equal to the installed height) directly below the collimation window. D-shuttle dosimeters were 210 

installed at height of 10 cm to 60 cm above the soil surface using specially designed holders. D-211 

shuttle dosimeters were installed at sites T1 and T2 (Takase River catchment) on 19 October 2015 212 

at a height of 10 cm above the floor surface; at site N6 (Niida River floodplain) on 18 February 213 

2016 at a height of 60 cm above the floodplain surface and at site N2 (Niida River floodplain) on 214 

18 February 2016 at a height 20 cm above the floodplain surface. Table 2 presents air dose rates at 215 

the sites under study at the time of installation of D-shuttle dosimeters. It should be noted that D-216 

shuttle dose rate readings are essentially lower as compared with air dose rate at 1 m height using 217 

ALOKA pocket survey meter PDR-111. However, D-shuttle readings are much more sensitive to 218 

changes in radiocesium inventory and its vertical distribution on the local spot covered by D-219 

shuttle dosimeter with collimated shield.   220 

 221 

 222 
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2.6.137Cs and 134Cs measurements 223 

The 137Cs and 134Cs activity concentrations in the samples were measured by gamma 224 

spectrometry using a standard electrode coaxial high-purity germanium detector (HPGe) 225 

CANBERRA GC3018 with relative efficiency of 31.9%. The gamma-spectra obtained were 226 

analyzed with Gamma Explorer (Canberra Industries Inc.). A true coincidence summing 227 

correction considering the container geometry was applied. Gamma-ray emissions at energies of 228 

604.7 and 661.6 keV for 134Cs and 137Cs, respectively, were counted for 1800–72,000 sec (all the 229 

samples were measured within l0% error), and detection limits of 134Cs and 137Cs were calculated 230 

using the method of Cooper. Decay corrections were made based on sampling date. Nine nuclides 231 

mixed activity standard volume sources in alumina (Japan Radioisotope Association, Tokyo, 232 

Japan; MX0033U8PP) were used as reference standards.  233 

Vertical distributions of 137Cs in soils were presented as a function of its inventory in 1-cm 234 

layer at correspondent depth (Bq/m2cm) for floodplain soils or in a fraction of 1-cm layer 235 

inventory at correspondent depth from the total 137Cs inventory in soil (cm-1). 236 

 237 

3. Results and discussion  238 

3.1.Dynamics of vertical distribution of 137Cs in undisturbed catchment soils 239 

Fig. 2 presents 137Cs vertical distributions in six cores of undisturbed grassland soil at the 240 

site near the pond Suzuuchi (S) in Okuma town (Fig. 1C), collected from March 2014 to June 241 

2016. All six profiles are characterized by a maximum of 137Cs activity concentration in the top 2 242 

cm layer of soil, with up to 80-90% of the total inventory remaining in the upper 5 cm layer. The 243 

rate of 137Cs vertical migration in the cores collected shows high variability. The effective 244 

dispersion coefficient Deff characterizing vertical migration rate in undisturbed soil and estimated 245 

using the “quasi-diffusional” model (Bulgakov et al., 1991; Ivanov et al., 1997; Konoplev et al., 246 

2016a) for these six profiles varied in a wide range, from 0.3 to 3 cm2/year. The lowest Deff 0.3 247 

cm2/year was found for the core collected in April 2015, and highest 3 cm2/year was found for one 248 
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of the three cores collected in June 2016. Similar variability of 137Cs vertical distribution and 249 

migration rates was observed for other undisturbed soil cores collected in Okuma town 250 

(catchments of ponds Inkyozaka, Funasawa and Kashiramori). 251 

It should be said that the profiles shown in the Fig. 2 are for the samples collected from 252 

March 2014 to June 2016 within one site (at a distance of several meters from each other), which 253 

means that the soil type was the same (fluviosol), as well as meteorological conditions 254 

(precipitation, air and soil temperature etc..). The observed variability in data, however, is high 255 

due to various factors. It needs to be realized that an important role in vertical migration is played 256 

by factors which cannot be monitored in a conventional way: these are random processes 257 

associated with biota, plant roots etc. Therefore, uncertainty will be high, particularly in the first 258 

years after an accident and it does not seem possible to reduce it through monitoring of traditional 259 

parameters. 260 

It follows from the above data on 137Cs vertical distribution in undisturbed catchment soil 261 

that both migration parameters and predictions made with them demonstrate a very high 262 

uncertainty, at least an order of magnitude, even for the same sampling site. The vertical migration 263 

of 137Cs in Chernobyl soils showed even greater variability (Ivanov et al., 1997). However, as was 264 

already noted previously (Konoplev et al., 2016a), the range of Deff variation in Fukushima-265 

contaminated soils is characterized by higher values. 266 

3.2.Study of sediments and associated r-Cs deposition on Niida river floodplain using ALGM 267 

Table 3 summarizes the data obtained using ALGM installed on seven observation sites of 268 

the Niida River floodplain. Sedimentation processes on the floodplain occur exclusively during 269 

floods. Both periods of ALGM exposition to sedimentation occurred earlier the extreme flooding 270 

caused by Tropical Storm Etau, 6-11 September 2015. According to Japan Meteorological Agency 271 

(JMA) during the first period of ALGM installation from July 2014 – April 2015, total of 903 mm 272 
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of precipitation fell; during the second period of ALGM installation from April 2015 – July 2015, 273 

the total precipitation was 370 mm. 274 

A comparison of initial radionuclide inventories in floodplain fluviosoils and sediments 275 

collected from the ALGM allows us to assess the tendencies of radionuclide inventory change for 276 

different reaches of the Niida River basin (Table 2). It is possible to split all sampling locations 277 

into three groups according to the proportion of inventory increase: high increase > 8% (N1/low; 278 

N4/middle and N5/middle); medium increase 4-8% (N6/low) and low increase <4% (N6/middle 279 

and N7/middle). The reasons for such changes, however, even on the floodplain sections forming 280 

the same group are different, since sediments accumulation rates and 137Cs concentrations in 281 

deposited sediments were influenced by different factors. There are three main factors influencing 282 

radionuclide inventories in sediments: sediment deposition rate, level of radionuclide 283 

contamination in the upstream part of the basin and proportion of different sediment sources input. 284 

The high increase of total inventories for sampling locations N4 and N5 is mostly associated with 285 

the highest deposition rates in these locations (see Table 3). Increased sediment accumulation rates, 286 

in turn, are due to the morphology of artificially straightened and narrowed channels on these sites. 287 

The watercourse is canalized and the canal has concrete walls. The floodplain is formed within the 288 

canal bottom, making the conveying capacity of the channel even lower. As a result, almost every 289 

flood event leads to inundation of the floodplain, on which transported sediments tend to 290 

accumulate due to high roughness of the surface (grass cover of 0.7-1.0 m high). In fact, these 291 

sediments originate from the material transported from the catchment area, which was formed 292 

primarily by bank erosion of periodically drying water courses draining the steep slopes on 293 

interfluve area and sediments formed due to partial erosion of sections of floodplain formed on 294 

canalized channels. Floodplain sites 4 and 5 (Fig. 1B) are typical of the upper reach of Niida river 295 

valley, its main tributary Iitoi river and smaller tributaries inflow into these rivers, because these 296 

watercourses, except for the uppermost reaches, are running in canalized channels. 297 
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Higher levels of radionuclide contamination in the upstream part of the river basin is the 298 

main factor for the site N1. N1 located downstream of the Niida river on the lowland plain (Fig. 299 

1B). The lowland plain is the least contaminated part of the Niida basin, and therefore even minor 300 

accumulation of relatively low contaminated sediments, of which a large proportion are sediments 301 

formed by bank erosion, results in a significant increase in 137Cs inventory. Sites N6 and N7 are 302 

located within the Hiso basin, the central part of which is the most contaminated section on the 303 

Niida basin (Fig. 1B). In absolute terms, the 137Cs concentrations in sediments deposited on these 304 

floodplain sections after typhoon seasons and rainfalls are not so much different from those in 305 

sediments deposited on sites N4 and N5. The Hiso river, upstream of site 6 and almost all the way 306 

to site N7, is running in a partially regulated channel and only some parts of one bank are 307 

consolidated. The morphology of the floor of the valley is such that the river is eroding the valley 308 

sides on many sections and this material resulting from erosion is the main source of the 309 

suspended sediment load. In contrast, site N7, located on the Hiso river floodplain upstream of the 310 

zone with the highest contamination levels, occurs in a canalized channel, likewise sites N4 and 311 

N5. The channel of the Hiso river and its tributaries located upstream of site N7 is draining an 312 

extensive intermountain depression and is also canalized. A minor increase in the 137Cs inventory 313 

in this case is explained by low overbank sedimentation rates. 314 

The average annual sedimentation rate of different sections of the Niida River floodplain 315 

based on ALGM observations from July 2014 to July 2015 varied from 0 to 1.3 cm/year 316 

depending on the site location and floodplain level. This range corresponds to mean values 317 

estimated from radiocesium vertical distributions in Niida River floodplain deposits of 2014 318 

(Konoplev et al., 2016a).  319 

Fig. 3 shows the particle size distribution for sediments accumulated and collected on the 320 

mats in July 2015 which was measured by sieving. Fig 4 shows particle size distribution obtained 321 

by laser diffraction for the layers of different depths of the core collected at site N5. Since the 322 

amount of available material was much more limited, it was not possible to use the sieving method 323 
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in this case. Comparison of the particle size distributions for the mats and different layers of the 324 

core at site N5 indicates that they are more or less identical, having the maximum around 60-100 325 

µm. However, the possible errors associated with application of different techniques for grain size 326 

analysis , should be taken into consideration  (Konert & Vandenberghe, 1997). 327 

With respect to particle size distribution, the sediments deposited on the mats fall into two 328 

groups corresponding to type of channel section on which a site occurs as well as water content of 329 

the flow on each of the sections.  330 

Artificial straightened canalized channels form the largest group (sites 4,5 and 7). Actually, 331 

the suspended sediments transported by the flow on these sections are dominated by materials 332 

resulting from erosion of the floodplain within the canalized channel with concrete banks. This is 333 

confirmed by similar particle sizes of sediments, sampled along the sediment depth profile on the 334 

floodplain site 5 (Fig. 4), for which sediment depth profiles were obtained. Very small variations 335 

in particle sizes between different layers are explained by certain differences in transporting ability 336 

of the flow during floods of different water content. In case of heavier floods, the proportion of 337 

sand (0-1 cm layer on Fig. 4) due to somewhat higher fraction of sand in suspended sediments that 338 

are redeposited on the floodplain. 339 

Note should also be made of a gradual reduction in fine fractions (< 0.1 mm) in sediments 340 

from sections with greater water content of river flows from site 7 (upstream of the river Hiso) to 341 

site 4 (channel of the river Niida, above the confluence with the river Iitoi). 342 

The second group includes sediments on the floodplain (sites 1 and 6) noted for larger 343 

particle sizes. These sites are located on the floodplain section downstream of the eroded valley 344 

side of the river Hiso in its lower reaches and on a wide floodplain section in the lower reach of 345 

the river Niida on coastal lowland. Particle sizes of these sediments always remain larger as 346 

compared to sediments on floodplains of the first group, however, can vary within a wide range 347 

depending on strength of floods occurring in a particular section. Flood strength is controlling the 348 

ratio of particle sizes of sediments resulting from erosion of valley walls of the river channel, 349 
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influxes from catchment areas and erosion of floodplain sections. The proportion of sediments 350 

formed due to erosion of valley walls and river channel is increasing sharply and becomes 351 

dominant during extreme floods, while fine particles of the sediments, due to increased turbulence 352 

of flows, do not redeposit on the floodplain at all and are transported downstream.  353 

Particle size distribution on site 1 is also controlled by water content of the river flow which, 354 

first, is higher in the lower reaches of the river and therefore the proportion of fractions with 355 

particle size, 0.1 mm, by and large, does not redeposit on the floodplain. Secondly, the particle 356 

size distribution of the sediments transported by the river Niida flow downstream is always 357 

determined by different sources of sediments, likewise particle size distribution on site 6. 358 

3.3. Redistribution of radiocesium within Niida River catchment during extreme flood event 359 

As was shown earlier (Konoplev et al., 2016a), the form of radiocesium vertical distribution 360 

in floodplain soils differs significantly from that in undisturbed catchment soils because of erosion 361 

of top soil and/or accumulation of sediments during floods. Significant flooding occurs in 362 

Fukushima Prefecture during typhoon seasons, usually from mid-August - October, and during 363 

rainy seasons, in late May-July (Fig. 5).  A very rare extreme flood occurred from 6 to 11 364 

September 2015 as a result of Tropical Storm Etau passed on. During a 6 days-period, 456 mm of 365 

precipitation fell in upper reach of Niida River (according to JMA data for Iitate meteorological 366 

station) which is about one third of the annual norm. The probability of such extreme floods can 367 

be estimated at 4-5% per year (Golosov et al., 2016). During the flood of September 2015, water 368 

flows washed out unsupported sections of stream banks. Also, some landslides occurred, mainly 369 

on very steep slopes. Sediment originated from the bank erosion, and landslides has very low 370 

concentration of 137Cs because of high proportion of material from deep soil layers. On the 371 

straightened sections of rivers, the water levels rose 2 - 2.2 m above the low water level, thereby 372 

watering floodplains to a depth of over 1.2 m. Significant changes occurred on the upper parts of 373 

the basin where floodplain sections were confined by a dam on the one side, while the opposite 374 
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valley side bank was eroded by the river. On separate parts of the river, the flow was discharged 375 

within the floodplain and thick sediments were formed of mixed sand and shingle spit of 30-40 cm, 376 

with a total weight of 400-500 tons, which is actually one tenth of the total volume of suspended 377 

sediments flowing over a year in this cross-section of the Hiso river (right tributary of Niida 378 

River) (Fig.1B, site N6). On the parts of incised riverbed with significant slopes in the middle part 379 

of the basin, the water levels were also more than two meters above the low stage, but no major 380 

restructuring of the riverbed was seen. The riverbed experienced clearing from meander bars made 381 

of sand and gravel material. There were no major changes in the riverbed on the flat part of the 382 

basin, even though the maximum water levels on the valley bottom were as high as 2.0-2.5 m 383 

above the low water levels. The accumulation layer for sand-gravel and boulder cobble materials 384 

on different parts was from 0.1 to 0.5 m, with average values 0.2-0.3 m. (Fig.1, sites N1 and N2). 385 

The length of newly formed sections of meander bars varied from dozens to more than 150 m. On 386 

some downstream sections of the Niida River, the banks were eroded over a length of 50-90 m, 387 

with dereliction of 2.5 m. It should be noted that the main effect of the flood consisted of strong 388 

washing of the Niida River and its tributaries over the entire length of the river up to the estuary, 389 

which has led to transport of the most 137 Cs contaminated fine fractions of sediments to the ocean.  390 

Sediment accumulation on different parts of the floodplain has resulted in different changes 391 

in dose rates, reflecting the extent to which a specific stretch and adjacent area were contaminated 392 

(Table 4). Greater changes in dose rates on the floodplain occurred on the upper reaches.  393 

Fig. 6 demonstrates dynamics of 137Cs vertical distribution in the upper 30-cm layer of 394 

soil/sediments at four selected observation sites on the Niida River floodplain. For the site N2 (Fig. 395 

6A), which is downstream of the Niida River with relatively low radiocesium initial deposition, 396 

there was no essential change in 137Cs inventories during first year of observations from April 397 

2014 to April 2015 (Fig. 4A). 137Cs inventories in different cores varied in about 10% narrow 398 

intervals from 560 kBq/m2 in April 2014 to 450 kBq/m2 in April 2015. However, the profile of 399 

August 2016 demonstrated significant changes both in the shape of distribution and in 137Cs 400 
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inventory. 137Cs activity concentrations decreased in the top layer from 15 to 20 kBq/kg in 2014-401 

2015 to only 2-3 kBq/kg in 2016 after the extreme flood of September 2015. At the same time, 402 

total 137Cs inventory increased by more than 4 times. 30-cm depth coring was not enough to cover 403 

the whole radiocesium profile on site N2 in August 2016, and an essential part of the total 137Cs 404 

inventory was located lower than 30 cm. 137Cs inventory in upper 30 cm of soil/sediments was 405 

found to be 1930 kBq/m2. Radiocesium dynamics in soil profile at the site N2 demonstrates, on 406 

the one hand, accumulation of contaminated sediments at the site but, on another hand, substantial 407 

reduction of radiocesium activity concentration in top soil layer and covering the most 408 

contaminated soil with cleaner “diluted” sediments.  Roughly estimated sediment deposition 409 

during the flood of September 2015 on the basis of the core collected in August 2016 at the site 410 

N2 is about 20 cm.  411 

Vertical distribution of 137Cs on site N4 (Fig. 6B) has already demonstrated the impact of 412 

erosion-sedimentation processes for 2014. From July 2014 to April 2015, the maximum of 137Cs 413 

moved for about 6 cm deeper due to sediments deposition occurring mostly during the 2014 414 

typhoon season. 137Cs inventory at the site for the same period increased for about 80%, meaning 415 

that accumulation processes prevailed erosion. At the same time 137Cs activity concentration in top 416 

soil layer decreased due to deposition of cleaner sediments. As a result of these two opposing  417 

processes, increasing of total inventory and decreasing of 137Cs activity concentration in the top 418 

soil layer, the dose rate did not change significantly (Table 4). The core collected in August 2016 419 

showed further movement of the maximum of 137Cs activity concentration for more 9 cm as 420 

compared to the core of April 2015 and substantial decrease of 137Cs activity concentration in the 421 

upper soil layer. The total inventory of 137Cs dropped to 1200 kBq/m2 for August 2016 from 1760 422 

kBq/m2 for April 2015. Most likely, this is explained by a mixture of processes of upper layer 423 

floodplain soils erosion and deposition of fresh, cleaner sediments, mostly occurring during 424 

extreme flood event in September 2015. Because of a combination of these processes, the air dose 425 

rate at site N4 dropped more than 2 times as compared to 2014 and 2015 (Table 4). 426 
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A similar situation was observed for the site N5 (Fig. 6C). A maximum of 137Cs activity 427 

concentration moved deeper for 6 cm from July 2014 to April 2015 and dropped down in absolute 428 

value. At the same time, 137Cs inventory did not change substantially. Unfortunately, it was not 429 

possible to collect the core at the site after the extreme flood of September 2015 because this 430 

section of floodplain became very stony following the flooding. The reduction of the air dose rate 431 

on the site after the extreme flood was about 3 times as compared with 2014-2015 (Table 4).  432 

The most dramatic changes of radiocesium distribution after the extreme flood event in 433 

September 2015 occurred at the site N6 on the floodplain of the Hiso River – tributary of Niida 434 

River. Fig. 6D demonstrates dynamics of 137Cs vertical distribution in soil/sediments on the 435 

middle level of the floodplain site N6. From April 2014 to April 2015, 137Cs inventory increased 436 

on the site from 1220 kBq/m2 to 2120 kBq/m2 because of accumulation of sediments originated 437 

from heavily contaminated watershed of upstream Hiso River. A slight increase of the air dose 438 

rate from 5.1 to 6.0 µSv/h was observed from April 2014 to April 2015, but during the September 439 

2015 extreme flood, these sediments were removed by the flow and were replaced by cleaner 440 

sediments originating from deeper soil layers and washout of the unsupported banks. Both activity 441 

concentrations and inventory dropped down significantly which caused substantial decrease of the 442 

air dose rate from 6 to 0.82 µSv/h (Table 3). Line measurements of freshly deposited sediments 443 

after the flood of September 2015 showed that sediment deposition during the event at site N6 was 444 

up to 40 cm.  445 

Therefore, during the extreme flood caused by Tropical Storm Etau occurring during 6-11 446 

September 2015, substantial natural decontamination of the Niida River floodplain took place 447 

followed by a significant drop of air dose rate.  448 

3.4.Dynamics of γ-ray dose rate from soil surface 449 

Fig. 7 shows the dynamics of collimated shield dose rate readings from soil surface on two 450 

sites (T1 and T2) on the heavily contaminated Takase River catchment together with data on 451 
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precipitation and air temperature at meteorological station Namie, located closest to the sites. Dose 452 

rate in both cases decreased faster than if due to radioactive decay only. The faster reduction in 453 

dose rate is explained by natural attenuation such as erosion of the top soil layer, vertical 454 

migration of radionuclides in soil profile and deposition of cleaner sediments transported by 455 

surface runoff (IAEA, 2006b). In addition to observed dose rates time dependence, Fig. 5 shows a 456 

hypothetical reduction with time of dose rate exclusively due to radioactive decay of 137Cs 457 

(T1/2=30.17 years) and 134Cs (T1/2=2.06 years), which are not subject to any migration, and the 458 

change in dose rate is caused by their radioactive decay only. In this case, neglecting the pre-459 

accident radiation background on the sites and assuming that in 2015-2016 observed dose rate can 460 

be attributed to 134Cs and 137Cs exclusively and the initial ratio of isotopes 134Cs/137Cs in fallout 461 

immediately after the accident to be 1 (Hirose, 2012), the time change in dose rate can be 462 

approximated by the equation below (Yoschenko et al., 2016):   463 

𝐷𝑅(𝑡) = 𝐷𝑅(𝑡0) ×

(𝑒−137∙𝑡 + 𝛼134
137

∙ 𝑒−134∙𝑡)

(𝑒−137∙𝑡0 + 𝛼134
137

∙ 𝑒−134∙𝑡0)
             (1) 464 

where t – current time after the accident; t0 – time after the accident for the date of D-shuttle 465 

dosimeter installation; DR(t) – current dose rate, DR(t0) – dose rate for the date of dosimeter 466 

installation; λ137 and λ134 – rate constants of radioactive decay for 137Cs and 134Cs, 467 

correspondingly; α134/137 – ratio of 134Cs and 137Cs gamma kerma equal 2.687 (Gusev and Belyaev, 468 

1991).    469 

Data shown in Fig. 7 are indicative of an essential reduction in dose rate during flooding 470 

periods in November 2015 and from the end of May-June 2016. Besides, a significant and sharp 471 

reduction in T1 occurred during snowmelt and resulting surface runoff in February 2016, when a 472 

sharp increase in air temperature was observed. 473 

Besides processes of radionuclide vertical and lateral migration variations in the daily dose 474 

rates over observational period are caused by decay of radionuclides, as well as stochastic nature 475 



20 

 

of quantity measured, changes in γ-ray absorption properties of soil (moisture content), instrument 476 

error etc. At the same time, the analysis of time dependence of the ratio of the measured dose rate 477 

to the calculated one, based on radioactive decay (equation 1), shows that for each of the 478 

observational sites T1 and T2 three time intervals can be identified when reduction in dose rate was 479 

determined primarily by decay, with minor variations of daily mean dose rates. For the site T1 480 

normalized dose rate was 1.03±0.01 for period from 28 October to 14 November 2015, then it 481 

decreased up to 0.98±0.03 for 15 November 2015 to 07 February 2016 and then to 0.86±0.02 for 482 

08 February to 21 June 2016. For T2 the corresponding values were equal to 1.00±0.01 for period 483 

20 October – 08 November 2015; 0.87±0.03 for 09 November 2015 – 27 April 2016 and 484 

0.74±0.03 for 08 February to 22 July 2016. In all the cases, the differences between the 485 

normalized dose rates measured in the subsequent periods were significant (t-test p<0.00001). 486 

Therefore, two sharp reductions in the measured dose rates in each of the observational points 487 

were due to a factor other than radioactive decay and cannot be brought about by the above-488 

mentioned factors causing variations of daily mean values. We suppose that these sharp reductions 489 

of dose rates in both cases are caused by slope erosion processes associated with heavy rain in 490 

November 2015 and snowmelt runoff in February 2016. 491 

For the site N6 on the Niida River floodplain faster reduction of collimated shield dose rate 492 

readings as compared to only radiocesium decay was observed as well. However, for the site N2, a 493 

slight increase of the D-shuttle dose rate readings was observed due to accumulation of 494 

contaminated sediments deposited during flooding.  495 

From the time dependence in D-shuttle dose rate readings an estimated integral rate constant 496 

of natural attenuation processes was obtained using an exponential trendline of dose rate dynamics.  497 

Calculated rate constants of natural attenuation and its half-times are presented in Table 5. 498 

Estimated rate constants of dose rate reduction for the sites without contaminated sediment 499 

accumulation in 2016 ranged from 0.21 to 0.38 year-1 and correspondent periods of dose rate half-500 

reduction was 1.8-3.3 years.  501 
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4. Conclusions 502 

Application of artificial lawn-grass mats to collect deposited sediments on the Niida river 503 

floodplain allowed sedimentation and radiocesium accumulation rates to be determined at 504 

different sections of the floodplain. Integral annual sedimentation rate on different sections of 505 

Niida river floodplain based on ALGM observations from July 2014 to July 2015 reached up to 506 

1.3 cm/year depending on the site location and floodplain level. Niida river sections with high, 507 

medium and low radiocesium accumulation were identified. During one year from July 2014 to 508 

July 2015 up to 13% increase of 137Cs inventory on the Niida river floodplain was observed using 509 

artificial lawn-grass mats. 510 

Extreme flood event of about 4-5% probability associated with Tropical Storm Etau 6-11 511 

September 2015 caused substantial natural decontamination of Niida river floodplain because of 512 

erosion of contaminated particles from the top layer and additional burying contaminated surface 513 

particles by deposited clean sediments. This was followed by significant drop of air dose rate. Air 514 

dose rate at some sections of Niida river floodplain decreased more than 7 times after 6 days of 515 

flood. Sediment deposition for downstream section of Niida river floodplain reached 20 cm after 516 

the event, and for upstream section in the area of confluence of Hiso river with basic Niida river – 517 

up to 40 cm. Extreme flood events during typhoons result in fast and efficient natural attenuation. 518 

Continuous collimated shield dose rate observations from soil surface using D-shuttle 519 

dosimeters allowed an estimate natural attenuation rates for river catchments and floodplain 520 

radioactive contamination. Estimated rate constants of dose rate reduction for the sites without 521 

contaminated sediments accumulation in 2016 were in range of 0.2-0.4 year-1. 522 

Accounting for soil erosion and sediment accumulation within river catchment and in 523 

particular, river floodplain, is key for predicting redistribution of radioactive contamination after 524 

the FDNPP accident on the contaminated territories, as well as for decision making about 525 

remediation and clean-up of contaminated territories.  526 
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Generally, due to higher precipitation, steeper slopes, higher temperatures and higher 527 

biological activities in soils, self-purification and natural attenuation of radioactive contamination 528 

in Fukushima associated with vertical and lateral radionuclide migration is essentially faster than 529 

in Chernobyl. In many cases monitored natural attenuation along with appropriate restrictions is 530 

the most optimal option for water remediation in Fukushima contaminated areas.  531 
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Table 1. Description of observation and soil sampling sites 681 

Location Coordinates Distance from 

FDNPP, km* 

137Cs deposition, 

kBq/m2 

Soil type** 

Inkyozaka (I) 

pond’s catchment 

N37.424800о 

E141.017517о 
0.24 2100±1000 

(9 soil cores) 

Fluviosol 

Suzuuchi (S) 

pond’s catchment 

N37.415767о 

E140.979767о 
3.75 6400±2200 

(8 soil cores) 

Fluviosol 

Funasawa (F) 

pond’s catchment 

N37.406050о 

E140.986217о 
3.5 2900±800 

(7 soil cores) 

Terrestrial 

regosol 

Kashiramori (K) 

pond’s catchment 

N37.379626о 

E140.959180о 
7 900±370 

(8 soil cores) 

Andosol 

Niida river 

floodplain, N1 

N37.654117о 

E140.956667о 
23 110 

(MEXT, 2011) 

Fluviosol 

Niida river 

floodplain, N2 

N37.660908о 

E140.911855о 
27.8 280 

(MEXT, 2011) 

Fluviosol 

Niida river 

floodplain, N3 

N37.653600о 

E140.798233о 

32.2 810 

(MEXT, 2011) 

Fluviosol 

Niida river 

floodplain, N4 

N37.676900о 

E140.769550о 
34.2 960 

(MEXT, 2011) 

Fluviosol 

Niida river 

floodplain, N5 

N37.660700о 

E140.774583о 
32.1 980 

(MEXT, 2011) 

Fluviosol 

Niida river 

floodplain, N6 

N37.613650о 

E140.801197о 
28.6 1660 

(MEXT, 2011) 

Fluviosol 

Niida river 

floodplain, N7 

N37.612845о 

E140.712493о 
34.4 1360 

(MEXT, 2011) 

Fluviosol 

Takase river 

catchment, T1 

N37.465018о 

E140.920988о 
9.8 5800±400 

(Backpack) 

Andosol 

Takase river 

catchment, T2 

N37.471189о 

E140.935467о 
9.0 4400±200 

(Backpack) 

Terrestrial 

regosol 

*Distance was determined from site location to the closest point on the border of FDNPP 682 

industrial site; **According to soil classification of Japan (Obara et al., 2011).683 
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Table 2. Initial 1-m height air dose rates readings using ALOKA pocket dosimeter for the 

sites of D-shuttle dosimeters with collimated shield installation for continuous dose rate 

recording. 

 

 

Site 

Takase river catchment Niida river floodplain 

T1 T2 N2 N6 

Date of installation 19.10.2015 19.10.2015 18.02.2016 18.02.2016 

Air dose rate at 1 m height, µSv/h 18.2 12 0.6 0.85 
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Table 3. Total sediment deposition (mm) and changes of 137Cs inventories for observation 

sites on the Niida River floodplain using ALGM 

 

Site Floodplain level Layer of deposited 

sediments, mm 

137Cs deposition with 

sediments, kBq/m2 

% of initial 

inventory 

ALGM exposition time from July 2014 to April 2015 

N1 Low 5.2 9.7 8.6 

N4 Middle 9.2 91 9.4 

N5 Middle 6.8 98 10 

N6 Low 2.9 72 4.3 

N6 Middle 1.0 43 2.6 

N7 Middle 2.0 31 2.5 

ALGM exposition time from April 2015 to July 2015 

N2 Low 0.5 6.9 2.5 

N4 Middle 3.5 38 4 

N5 Middle 2.1 25 2.6 

N6 Low 0.5 14 0.8 

N7 Low 1.6 30 2.2 

N7 Middle 0.3 5.5 0.4 
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Table 4. Change of air dose rate at 1 m height above soil surface at the sites under study 

within Niida river floodplain before and after extreme flood because of Tropical Storm Etau 

of September 6-11, 2015 

 

Site River section Floodplain section Air dose rate at 1 m height, µSv/h 

April 2014 April 2015 April 2016 

N1 

 

Downstream 

Levee 1.0 0.9- 0.33 

Depression 0.65 0.6 0.6 

N2 

 

Downstream 

Levee 1.5 1.1 0.6 

Middle level 1.5 1.1 1.0 

N3 Upstream Middle level 2.0 1,3 1.6 

N4 Upstream Middle level 2.5 2.3 0.98 

N5 Upstream Middle level 2.7 2.6 0.85 

N6 

 

Upstream 

Middle level 5.1 6 0.82 

Higher level 5.1 6 2.1 

N7 Upstream Middle level 3.8 3.7 2.3 
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Table 5. Rate constants λna (year-1) and half-times T1/2
na (year) of natural attenuation processes 

based on dynamics of shield collimated dose rate readings. 

 

Site Period of observations λna (year-1) T1/2
na (year) 

Takase river, T1 20.10.2015-20.07.2016 0.32 2.1 

Takase river T2 20.10.2015-20.07.2016 0.38 1.8 

Hiso river floodplain, N6 20.02.2016-20.07.2016 0.21 3.3 

Niida river floodplain, N2 20.02.2016-20.07.2016 - >5 
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Fig. 1. Locations of observation sites with air dose rate distribution map according to the 7th 

airborne monitoring survey (NRA, 2013) on the date of 28 September 2013 (A); map of Niida 

river catchment, sub-catchments and sampling sites locations (Golosov et al., 2016; Konoplev 

et al., 2016b) with 137Cs deposition levels according to (MEXT, 2011) (B) and location of 

undisturbed soil sampling sites on the catchments of irrigation ponds Inkyozaka (I), Suzuuchi 

(S), Funasawa (F) and Kashiramori (K) in Okuma town (Konoplev et al., 2016c).  
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Fig. 2. Differential vertical distributions of 137Cs inventory fraction (cm-1) in 6 soil cores 

collected at the site Suzuuchi (S) pond in Okuma town from April 2014 to June 2016. 
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Fig. 3. Particle size distribution of sediments deposited and collected on ALGM at Niida river 

floodplain sites under study. Data were obtained by sieving technique and are presented for 

the sampling points nearest to the Niida river water front. 
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Fig. 4. Differential particle size distribution of sediments at various depth (0-1 cm; 7-9 cm 

and 20-23 cm) measured by laser diffraction particle size analyzer for the core collected near 

the Niida river waterfront on the site N5. 
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Fig. 5. Precipitation (mm/day) during 2015-2016 at Japan Meteorological Agency’s 

meteorological station Iitate within Niida river basin 

(http://www.data.jma.go.jp/gmd/risk/obsdl/). 

  

http://www.data.jma.go.jp/gmd/risk/obsdl/
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Fig. 6. Dynamics of depth distribution of 137Cs inventory in 1-cm layer of soil/sediments 

(Bq/m2cm) for Niida river floodplain from April 2014 to August 2016: (A) – site N2 (low 

level); (B) - site N4 (middle level); (C) – site N5 (middle level); (D) – site N6 (middle level).  
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Fig. 7. Time dependence of dose rates (µSv/day) recorded with collimated shield D-shuttle 

dosimeter from soil surface spot 10 cm below the dosimeter for two sites T1 and T2 on 

Takase river catchment during eight months from  20/10/2015 to 20/07/2016 together with 

data on precipitation (mm/day) and air temperature (oC). 


