38 research outputs found

    Instability of a Nielsen-Olesen vortex embedded in the electroweak theory; 2, electroweak vortices and gauge equivalence

    Get PDF
    Vortex configurations in the electroweak gauge theory are investigated. Two gauge-inequivalent solutions of the field equations, the Z and W vortices, have previously been found. They correspond to embeddings of the abelian Nielsen-Olesen vortex solution into a U(1) subgroup of SU(2)xU(1). It is shown here that any electroweak vortex solution can be mapped into a solution of the same energy with a vanishing upper component of the Higgs field. The correspondence is a gauge equivalence for all vortex solutions except those for which the winding numbers of the upper and lower Higgs components add to zero. This class of solutions, which includes the W vortex, instead corresponds to a singular solution in the one-component gauge. The results, combined with numerical investigations, provide an argument against the existence of other vortex solutions in the gauge-Higgs sector of the Standard Model

    One Loop Vaccum Polarization in a Locally de Sitter Background

    Full text link
    We compute the one loop vacuum polarization from massless, minimally coupled scalar QED in a locally de Sitter background. Gauge invariance is maintained through the use of dimensional regularization, whereas conformal invariance is explicitly broken by the scalar kinetic term as well as through the conformal anomaly. A fully renormalized result is obtained. The one loop corrections to the linearized, effective field equations do not vanish when evaluated on-shell. In fact the on-shell one loop correction depends quadratically on the inflationary scale factor, similar to a photon mass. The contribution from the conformal anomaly is insignificant by comparison.Comment: 31 pages, LaTeX 2 epsilon, 4 figure

    Phase Equilibration and Magnetic Field Generation in U(1) Bubble Collisions

    Get PDF
    We present the results of lattice computations of collisions of two expanding bubbles of true vacuum in the Abelian Higgs model with a first-order phase transition. New time-dependent analytical solutions for the Abelian field strength and the phase of the complex field are derived from initial conditions inferred from linear superposition and are shown to be in excellent agreement with the numerical solutions especially for the case where the initial phase difference between the bubbles is small. With a step-function approximation for the initial phase of the complex field, solutions for the Abelian field strength and other gauge-invariant quantities are obtained in closed form. Possible extensions of the solution to the case of the electroweak phase transition and the generation of primordial magnetic fields are briefly discussed.Comment: LaTeX, 41 pages, 6 figures, submitted to Physical Review

    Defect Statistics in the Two Dimensional Complex Ginsburg-Landau Model

    Full text link
    The statistical correlations between defects in the two dimensional complex Ginsburg-Landau model are studied in the defect-coarsening regime. In particular the defect-velocity probability distribution is determined and has the same high velocity tail found for the purely dissipative time-dependent Ginsburg-Landau (TDGL) model. The spiral arms of the defects lead to a very different behavior for the order parameter correlation function in the scaling regime compared to the results for the TDGL model.Comment: 24 page

    Cosmological Consequences of Slow-Moving Bubbles in First-Order Phase Transitions

    Get PDF
    In cosmological first-order phase transitions, the progress of true-vacuum bubbles is expected to be significantly retarded by the interaction between the bubble wall and the hot plasma. We examine the evolution and collision of slow-moving true-vacuum bubbles. Our lattice simulations indicate that phase oscillations, predicted and observed in systems with a local symmetry and with a global symmetry where the bubbles move at speeds less than the speed of light, do not occur inside collisions of slow-moving local-symmetry bubbles. We observe almost instantaneous phase equilibration which would lead to a decrease in the expected initial defect density, or possibly prevent defects from forming at all. We illustrate our findings with an example of defect formation suppressed in slow-moving bubbles. Slow-moving bubble walls also prevent the formation of `extra defects', and in the presence of plasma conductivity may lead to an increase in the magnitude of any primordial magnetic field formed.Comment: 10 pages, 7 figures, replaced with typos corrected and reference added. To appear in Phys. Rev.

    Higgs Boson Mass in Models with Gauge-Mediated Supersymmetry Breaking

    Get PDF
    We present the predictions for the mass MhM_h of the lightest Higgs boson in models with gauge-mediated supersymmetry breaking as a function of the SUSY-breaking scale. We include all radiative corrections up to two loops and point out that if the CDF e+ e- two-photon event is interpreted in terms of these models, then the lightest Higgs boson should be lighter than 110 GeV.Comment: revtex, 13 pages, 2 separate postscript figures, uses aps.sty, prl.sty, preprint.sty. Submitted to Phys. Lett.

    Microwave Background Signals from Tangled Magnetic Fields

    Get PDF
    An inhomogeneous cosmological magnetic field will create Alfven-wave modes that induce a small rotational velocity perturbation on the last scattering surface of the microwave background radiation. The Alfven-wave mode survives Silk damping on much smaller scales than the compressional modes. This, in combination with its rotational nature, ensures that there will be no sharp cut-off in anisotropy on arc-minute scales. We estimate that a magnetic field which redshifts to a present value of 3×1093\times 10^{-9} Gauss produces temperature anisotropies at the 10 micro Kelvin level at and below 10 arc-min scales. A tangled magnetic field, which is large enough to influence the formation of large scale structure is therefore potentially detectable by future observations.Comment: 5 pages, Revtex, no figure

    Three-dimensional pattern formation, multiple homogeneous soft modes, and nonlinear dielectric electroconvection

    Full text link
    Patterns forming spontaneously in extended, three-dimensional, dissipative systems are likely to excite several homogeneous soft modes (\approx hydrodynamic modes) of the underlying physical system, much more than quasi one- and two-dimensional patterns are. The reason is the lack of damping boundaries. This paper compares two analytic techniques to derive the patten dynamics from hydrodynamics, which are usually equivalent but lead to different results when applied to multiple homogeneous soft modes. Dielectric electroconvection in nematic liquid crystals is introduced as a model for three-dimensional pattern formation. The 3D pattern dynamics including soft modes are derived. For slabs of large but finite thickness the description is reduced further to a two-dimensional one. It is argued that the range of validity of 2D descriptions is limited to a very small region above threshold. The transition from 2D to 3D pattern dynamics is discussed. Experimentally testable predictions for the stable range of ideal patterns and the electric Nusselt numbers are made. For most results analytic approximations in terms of material parameters are given.Comment: 29 pages, 2 figure
    corecore