646 research outputs found
Automatically Designing CNN Architectures for Medical Image Segmentation
Deep neural network architectures have traditionally been designed and
explored with human expertise in a long-lasting trial-and-error process. This
process requires huge amount of time, expertise, and resources. To address this
tedious problem, we propose a novel algorithm to optimally find hyperparameters
of a deep network architecture automatically. We specifically focus on
designing neural architectures for medical image segmentation task. Our
proposed method is based on a policy gradient reinforcement learning for which
the reward function is assigned a segmentation evaluation utility (i.e., dice
index). We show the efficacy of the proposed method with its low computational
cost in comparison with the state-of-the-art medical image segmentation
networks. We also present a new architecture design, a densely connected
encoder-decoder CNN, as a strong baseline architecture to apply the proposed
hyperparameter search algorithm. We apply the proposed algorithm to each layer
of the baseline architectures. As an application, we train the proposed system
on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC)
MICCAI 2017. Starting from a baseline segmentation architecture, the resulting
network architecture obtains the state-of-the-art results in accuracy without
performing any trial-and-error based architecture design approaches or close
supervision of the hyperparameters changes.Comment: Accepted to Machine Learning in Medical Imaging (MLMI 2018
Impact of adversarial examples on deep learning models for biomedical image segmentation
Deep learning models, which are increasingly being used in the field of medical image analysis, come with a major security risk, namely, their vulnerability to adversarial examples. Adversarial examples are carefully crafted samples that force machine learning models to make mistakes during testing time. These malicious samples have been shown to be highly effective in misguiding classification tasks. However, research on the influence of adversarial examples on segmentation is significantly lacking. Given that a large portion of medical imaging problems are effectively segmentation problems, we analyze the impact of adversarial examples on deep learning-based image segmentation models. Specifically, we expose the vulnerability of these models to adversarial examples by proposing the Adaptive Segmentation Mask Attack (ASMA). This novel algorithm makes it possible to craft targeted adversarial examples that come with (1) high intersection-over-union rates between the target adversarial mask and the prediction and (2) with perturbation that is, for the most part, invisible to the bare eye. We lay out experimental and visual evidence by showing results obtained for the ISIC skin lesion segmentation challenge and the problem of glaucoma optic disc segmentation. An implementation of this algorithm and additional examples can be found at https://github.com/utkuozbulak/adaptive-segmentation-mask-attack
Brain Tumor Synthetic Segmentation in 3D Multimodal MRI Scans
The magnetic resonance (MR) analysis of brain tumors is widely used for
diagnosis and examination of tumor subregions. The overlapping area among the
intensity distribution of healthy, enhancing, non-enhancing, and edema regions
makes the automatic segmentation a challenging task. Here, we show that a
convolutional neural network trained on high-contrast images can transform the
intensity distribution of brain lesions in its internal subregions.
Specifically, a generative adversarial network (GAN) is extended to synthesize
high-contrast images. A comparison of these synthetic images and real images of
brain tumor tissue in MR scans showed significant segmentation improvement and
decreased the number of real channels for segmentation. The synthetic images
are used as a substitute for real channels and can bypass real modalities in
the multimodal brain tumor segmentation framework. Segmentation results on
BraTS 2019 dataset demonstrate that our proposed approach can efficiently
segment the tumor areas. In the end, we predict patient survival time based on
volumetric features of the tumor subregions as well as the age of each case
through several regression models
3D-BEVIS: Bird's-Eye-View Instance Segmentation
Recent deep learning models achieve impressive results on 3D scene analysis
tasks by operating directly on unstructured point clouds. A lot of progress was
made in the field of object classification and semantic segmentation. However,
the task of instance segmentation is less explored. In this work, we present
3D-BEVIS, a deep learning framework for 3D semantic instance segmentation on
point clouds. Following the idea of previous proposal-free instance
segmentation approaches, our model learns a feature embedding and groups the
obtained feature space into semantic instances. Current point-based methods
scale linearly with the number of points by processing local sub-parts of a
scene individually. However, to perform instance segmentation by clustering,
globally consistent features are required. Therefore, we propose to combine
local point geometry with global context information from an intermediate
bird's-eye view representation.Comment: camera-ready version for GCPR '1
Massively Parallel Video Networks
We introduce a class of causal video understanding models that aims to
improve efficiency of video processing by maximising throughput, minimising
latency, and reducing the number of clock cycles. Leveraging operation
pipelining and multi-rate clocks, these models perform a minimal amount of
computation (e.g. as few as four convolutional layers) for each frame per
timestep to produce an output. The models are still very deep, with dozens of
such operations being performed but in a pipelined fashion that enables
depth-parallel computation. We illustrate the proposed principles by applying
them to existing image architectures and analyse their behaviour on two video
tasks: action recognition and human keypoint localisation. The results show
that a significant degree of parallelism, and implicitly speedup, can be
achieved with little loss in performance.Comment: Fixed typos in densenet model definition in appendi
Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation
Image segmentation is a fundamental problem in biomedical image analysis.
Recent advances in deep learning have achieved promising results on many
biomedical image segmentation benchmarks. However, due to large variations in
biomedical images (different modalities, image settings, objects, noise, etc),
to utilize deep learning on a new application, it usually needs a new set of
training data. This can incur a great deal of annotation effort and cost,
because only biomedical experts can annotate effectively, and often there are
too many instances in images (e.g., cells) to annotate. In this paper, we aim
to address the following question: With limited effort (e.g., time) for
annotation, what instances should be annotated in order to attain the best
performance? We present a deep active learning framework that combines fully
convolutional network (FCN) and active learning to significantly reduce
annotation effort by making judicious suggestions on the most effective
annotation areas. We utilize uncertainty and similarity information provided by
FCN and formulate a generalized version of the maximum set cover problem to
determine the most representative and uncertain areas for annotation. Extensive
experiments using the 2015 MICCAI Gland Challenge dataset and a lymph node
ultrasound image segmentation dataset show that, using annotation suggestions
by our method, state-of-the-art segmentation performance can be achieved by
using only 50% of training data.Comment: Accepted at MICCAI 201
Deep Neural Network with l2-norm Unit for Brain Lesions Detection
Automated brain lesions detection is an important and very challenging
clinical diagnostic task because the lesions have different sizes, shapes,
contrasts, and locations. Deep Learning recently has shown promising progress
in many application fields, which motivates us to apply this technology for
such important problem. In this paper, we propose a novel and end-to-end
trainable approach for brain lesions classification and detection by using deep
Convolutional Neural Network (CNN). In order to investigate the applicability,
we applied our approach on several brain diseases including high and low-grade
glioma tumor, ischemic stroke, Alzheimer diseases, by which the brain Magnetic
Resonance Images (MRI) have been applied as an input for the analysis. We
proposed a new operating unit which receives features from several projections
of a subset units of the bottom layer and computes a normalized l2-norm for
next layer. We evaluated the proposed approach on two different CNN
architectures and number of popular benchmark datasets. The experimental
results demonstrate the superior ability of the proposed approach.Comment: Accepted for presentation in ICONIP-201
Semi-Supervised Deep Learning for Fully Convolutional Networks
Deep learning usually requires large amounts of labeled training data, but
annotating data is costly and tedious. The framework of semi-supervised
learning provides the means to use both labeled data and arbitrary amounts of
unlabeled data for training. Recently, semi-supervised deep learning has been
intensively studied for standard CNN architectures. However, Fully
Convolutional Networks (FCNs) set the state-of-the-art for many image
segmentation tasks. To the best of our knowledge, there is no existing
semi-supervised learning method for such FCNs yet. We lift the concept of
auxiliary manifold embedding for semi-supervised learning to FCNs with the help
of Random Feature Embedding. In our experiments on the challenging task of MS
Lesion Segmentation, we leverage the proposed framework for the purpose of
domain adaptation and report substantial improvements over the baseline model.Comment: 9 pages, 6 figure
Building Disease Detection Algorithms with Very Small Numbers of Positive Samples
Although deep learning can provide promising results in medical image
analysis, the lack of very large annotated datasets confines its full
potential. Furthermore, limited positive samples also create unbalanced
datasets which limit the true positive rates of trained models. As unbalanced
datasets are mostly unavoidable, it is greatly beneficial if we can extract
useful knowledge from negative samples to improve classification accuracy on
limited positive samples. To this end, we propose a new strategy for building
medical image analysis pipelines that target disease detection. We train a
discriminative segmentation model only on normal images to provide a source of
knowledge to be transferred to a disease detection classifier. We show that
using the feature maps of a trained segmentation network, deviations from
normal anatomy can be learned by a two-class classification network on an
extremely unbalanced training dataset with as little as one positive for 17
negative samples. We demonstrate that even though the segmentation network is
only trained on normal cardiac computed tomography images, the resulting
feature maps can be used to detect pericardial effusion and cardiac septal
defects with two-class convolutional classification networks
Recycle-GAN: Unsupervised Video Retargeting
We introduce a data-driven approach for unsupervised video retargeting that
translates content from one domain to another while preserving the style native
to a domain, i.e., if contents of John Oliver's speech were to be transferred
to Stephen Colbert, then the generated content/speech should be in Stephen
Colbert's style. Our approach combines both spatial and temporal information
along with adversarial losses for content translation and style preservation.
In this work, we first study the advantages of using spatiotemporal constraints
over spatial constraints for effective retargeting. We then demonstrate the
proposed approach for the problems where information in both space and time
matters such as face-to-face translation, flower-to-flower, wind and cloud
synthesis, sunrise and sunset.Comment: ECCV 2018; Please refer to project webpage for videos -
http://www.cs.cmu.edu/~aayushb/Recycle-GA
- …