12,193 research outputs found

    Setting the Agenda: Different strategies of a Mass Media in a model of cultural dissemination

    Full text link
    Day by day, people exchange opinions about a given new with relatives, friends, and coworkers. In most cases, they get informed about a given issue by reading newspapers, listening to the radio, or watching TV, i.e., through a Mass Media (MM). However, the importance of a given new can be stimulated by the Media by assigning newspaper's pages or time in TV programs. In this sense, we say that the Media has the power to "set the agenda", i.e., it decides which new is important and which is not. On the other hand, the Media can know people's concerns through, for instance, websites or blogs where they express their opinions, and then it can use this information in order to be more appealing to an increasing number of people. In this work, we study different scenarios in an agent-based model of cultural dissemination, in which a given Mass Media has a specific purpose: To set a particular topic of discussion and impose its point of view to as many social agents as it can. We model this by making the Media has a fixed feature, representing its point of view in the topic of discussion, while it tries to attract new consumers, by taking advantage of feedback mechanisms, represented by adaptive features. We explore different strategies that the Media can adopt in order to increase the affinity with potential consumers and then the probability to be successful in imposing this particular topic.Comment: 23 pages, 7 figure

    The 2d Gross-Neveu Model at Finite Temperature and Density with Finite Corrections

    Full text link
    We use the linear δ\delta expansion, or optimized perturbation theory, to evaluate the effective potential for the two dimensional Gross-Neveu model at finite temperature and density obtaining analytical equations for the critical temperature, chemical potential and fermionic mass which include finite NN corrections. Our results seem to improve over the traditional large-N predictions.Comment: 7 pages, 8 figure

    The Elephant Quantum Walk

    Full text link
    We explore the impact of long-range memory on the properties of a family of quantum walks in a one-dimensional lattice and discrete time, which can be understood as the quantum version of the classical "Elephant Random Walk" non-Markovian process. This Elephant Quantum Walk is robustly superballistic with the standard deviation showing a constant exponent, σt3/2\sigma \propto t^{3/ 2} , whatever the quantum coin operator, on which the diffusion coefficient is dependent. On the one hand, this result indicates that contrarily to the classical case, the degree of superdiffusivity in quantum non- Markovian processes of this kind is mainly ruled by the extension of memory rather than other microscopic parameters that explicitly define the process. On the other hand, these parameters reflect on the diffusion coefficient.Comment: 4 figures, any comments is welcome. Accepted in PR
    corecore