2,636 research outputs found

    Theory and Applications of Robust Optimization

    Full text link
    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.Comment: 50 page

    Hemoglobin binding activity and hemoglobin-binding protein of Prevotella nigrescens

    Get PDF
    Prevotella nigrescens, lacking siderophores was found to bind to the hemoproteins. The binding was observed also in the envelope which was prepared by sonication of the cell. The binding occurred in the pH-dependent manner; the binding was observed below neutral pHs of the incubation mixtures but only slightly observed in the neutral and alkaline pHs. Furthermore, hemoglobin bound to the envelope was dissociated at high pHs buffers. Maximum amounts of hemoglobin bound to 1 mg envelope was 51.2 μg. Kd for the reaction at pH 5.0 was 2.1 × 10-10M (210 pM). From the dot blot assay, hemoglobin could bind to a protein solubilized from the envelope by a detergent, referred to as hemoglobin-binding protein (HbBP), then it was purified by the sequential procedures of ion exchange chromatography, affinity chromatography and isoelectric focusing. Molecular weight and isoelectric point of the HbBP were 46 kDa and 6.1, respectively

    Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21

    Get PDF
    OBJECTIVE—Fibroblast growth factor (FGF)-21 improves insulin sensitivity and lipid metabolism in obese or diabetic animal models, while human studies revealed increased FGF-21 levels in obesity and type 2 diabetes. Given that FGF-21 has been suggested to be a peroxisome proliferator–activator receptor (PPAR) –dependent regulator of fasting metabolism, we hypothesized that free fatty acids (FFAs), natural agonists of PPAR, might modify FGF-21 levels. RESEARCH DESIGN AND METHODS—The effect of fatty acids on FGF-21 was investigated in vitro in HepG2 cells. Within a randomized controlled trial, the effects of elevated FFAs were studied in 21 healthy subjects (13 women and 8 men). Within a clinical trial including 17 individuals, the effect of insulin was analyzed using an hyperinsulinemic-euglycemic clamp and the effect of PPAR activation was studied subsequently in a rosiglitazone treatment trial over 8 weeks. RESULTS—Oleate and linoleate increased FGF-21 expression and secretion in a PPAR-dependent fashion, as demonstrated by small-interfering RNA–induced PPAR knockdown, while palmitate had no effect. In vivo, lipid infusion induced an increase of circulating FGF-21 in humans, and a strong correlation between the change in FGF-21 levels and the change in FFAs was observed. An artificial hyperinsulinemia, which was induced to delineate the potential interaction between elevated FFAs and hyperinsulinemia, revealed that hyperinsulinemia also increased FGF-21 levels in vivo, while rosiglitazone treatment had no effect. CONCLUSIONS—The results presented here offer a mechanism explaining the induction of the metabolic regulator FGF-21 in the fasting situation but also in type 2 diabetes and obesity

    Low-level laser therapy (LLLT) combined with swimming training improved the lipid profile in rats fed with high-fat diet

    Get PDF
    Obesity and associated dyslipidemia is the fastest growing health problem throughout the world. The combination of exercise and low-level laser therapy (LLLT) could be a new approach to the treatment of obesity and associated disease. In this work, the effects of LLLT associated with exercises on the lipid metabolism in regular and high-fat diet rats were verified. We used 64 rats divided in eight groups with eight rats each, designed: SC, sedentary chow diet; SCL, sedentary chow diet laser, TC, trained chow diet; TCL, trained chow diet laser; SH, sedentary high-fat diet; SHL, sedentary high-fat diet laser; TH, trained high-fat diet; and THL, trained high-fat diet laser. The exercise used was swimming during 8 weeks/90 min daily and LLLT (GA-Al-As, 830 nm) dose of 4.7 J/point and total energy 9.4 J per animal, applied to both gastrocnemius muscles after exercise. We analyzed biochemical parameters, percentage of fat, hepatic and muscular glycogen and relative mass of tissue, and weight percentage gain. The statistical test used was ANOVA, with post hoc Tukey–Kramer for multiple analysis between groups, and the significant level was p < 0.001, p < 0.01, and p < 0.05. LLLT decreased the total cholesterol (p < 0.05), triglycerides (p < 0.01), low-density lipoprotein cholesterol (p < 0.05), and relative mass of fat tissue (p < 0.05), suggesting increased metabolic activity and altered lipid pathways. The combination of exercise and LLLT increased the benefits of exercise alone. However, LLLT without exercise tended to increase body weight and fat content. LLLT may be a valuable addition to a regimen of diet and exercise for weight reduction and dyslipidemic control

    Resultant-based methods for plane curves intersection problems

    Get PDF
    http://www.springeronline.com/3-540-28966-6We present an algorithm for solving polynomial equations, which uses generalized eigenvalues and eigenvectors of resultant matrices. We give special attention to the case of two bivariate polynomials and the Sylvester or Bezout resultant constructions. We propose a new method to treat multiple roots, detail its numerical aspects and describe experiments on tangential problems, which show the efficiency of the approach. An industrial application of the method is presented at the end of the paper. It consists in recovering cylinders from a large cloud of points and requires intensive resolution of polynomial equations

    Impact of national lockdown on the hyperacute stroke care and rapid transient ischaemic attack outpatient service in a comprehensive tertiary stroke centre during the COVID-19 pandemic

    Get PDF
    Background: The COVID-19 pandemic is having major implications for stroke services worldwide. We aimed to study the impact of the national lockdown period during the COVID-19 outbreak on stroke and transient ischemic attack (TIA) care in London, UK. Methods: We retrospectively analyzed data from a quality improvement registry of consecutive patients presenting with acute ischemic stroke and TIA to the Stroke Department, Imperial College Health Care Trust London during the national lockdown period (between March 23rd and 30th June 2020). As controls, we evaluated the clinical reports and stroke quality metrics of patients presenting with stroke or TIA in the same period of 2019. Results: Between March 23rd and 30th June 2020, we documented a fall in the number of stroke admissions by 31.33% and of TIA outpatient referrals by 24.44% compared to the same period in 2019. During the lockdown, we observed a significant increase in symptom onset-to-door time in patients presenting with stroke (median = 240 vs. 160 min, p = 0.020) and TIA (median = 3 vs. 0 days, p = 0.002) and a significant reduction in the total number of patients thrombolysed [27 (11.49%) vs. 46 (16.25%, p = 0.030)]. Patients in the 2020 cohort presented with a lower median pre-stroke mRS (p = 0.015), but an increased NIHSS (p = 0.002). We registered a marked decrease in mimic diagnoses compared to the same period of 2019. Statistically significant differences were found between the COVID and pre-COVID cohorts in the time from onset to door (median 99 vs. 88 min, p = 0.026) and from onset to needle (median 148 vs. 126 min, p = 0.036) for thrombolysis whilst we did not observe any significant delay to reperfusion therapies (door-to-needle and door-to-groin puncture time). Conclusions: National lockdown in the UK due to the COVID-19 pandemic was associated with a significant decrease in acute stroke admission and TIA evaluations at our stroke center. Moreover, a lower proportion of acute stroke patients in the pandemic cohort benefited from reperfusion therapy. Further research is needed to evaluate the long-term effects of the pandemic on stroke care

    Coibamide A Targets Sec61 to Prevent Biogenesis of Secretory and Membrane Proteins

    Get PDF
    Coibamide A (CbA) is a marine natural product with potent antiproliferative activity against human cancer cells and a unique selectivity profile. Despite promising antitumor activity, the mechanism of cytotoxicity and specific cellular target of CbA remain unknown. Here, we develop an optimized synthetic CbA photoaffinity probe (photo-CbA) and use it to demonstrate that CbA directly targets the Sec61 alpha subunit of the Sec61 protein translocon. CbA binding to Sec61 results in broad substratenonselective inhibition of ER protein import and potent cytotoxicity against specific cancer cell lines. CbA targets a lumenal cavity of Sec61 that is partially shared with known Sec61 inhibitors, yet profiling against resistance conferring Sec61 alpha mutations identified from human HCT116 cells su ests a distinct binding mode for CbA. Specifically, despite conferring strong resistance to all previously known Sec61 inhibitors, the Sec61 alpha mutant R66I remains sensitive to CbA. A further unbiased screen for Sec61 alpha resistance mutations identified the CbA-resistant mutation S71P, which confirms nonidentical binding sites for CbA and apratoxin A and supports the susceptibility of the Sec61 plug region for channel inhibition. Remarkably, CbA, apratoxin A, and ipomoeassin F do not display comparable patterns of potency and selectivity in the NCI60 panel of human cancer cell lines. Our work connecting CbA activity with selective prevention of secretory and membrane protein biogenesis by inhibition of Sec61 opens up possibilities for developing new Sec61 inhibitors with improved druglike properties that are based on the coibamide pharmacophore.Peer reviewe

    Materialistic cues make us miserable: A meta‐analysis of the experimental evidence for the effects of materialism on individual and societal well‐being

    Get PDF
    open access articleConsumer‐oriented societies are awash with materialistic messages that link happiness and success to wealth and consumption. However, despite extensive research evidence that dispositional materialistic orientations are correlated with lower well‐being, the effects of materialistic cues on the well‐being of individuals and social groups have not been examined. The present research meta‐analytically reviews the experimental evidence for the causal effects of materialism on two dimensions of well‐being: (a) individual and (b) societal. We included 27 independent studies that met the inclusion criteria of priming materialism and measuring well‐being (N = 3,649), containing a total of 62 effect sizes. Multilevel modeling revealed that materialism has an effect on both individual (δ = −0.39) and societal well‐being (δ = −0.41), suggesting that materialistic cues cause lower well‐being. Moderation effects suggested that materialistic cues might have a higher effect on interpersonal well‐being than on self‐evaluation indicators. We discuss the limitations of the current evidence, highlight the research gaps and underdeveloped areas, and provide recommendations such as minimum sample size for future experimental work, since the advancement of this area will help us to gain a better understanding of the impact of consumer‐oriented societies on the well‐being of individuals and social groups
    corecore