300 research outputs found

    Timescales of Turbulent Relative Dispersion

    Full text link
    Tracers in a turbulent flow separate according to the celebrated t3/2t^{3/2} Richardson--Obukhov law, which is usually explained by a scale-dependent effective diffusivity. Here, supported by state-of-the-art numerics, we revisit this argument. The Lagrangian correlation time of velocity differences is found to increase too quickly for validating this approach, but acceleration differences decorrelate on dissipative timescales. This results in an asymptotic diffusion t1/2\propto t^{1/2} of velocity differences, so that the long-time behavior of distances is that of the integral of Brownian motion. The time of convergence to this regime is shown to be that of deviations from Batchelor's initial ballistic regime, given by a scale-dependent energy dissipation time rather than the usual turnover time. It is finally argued that the fluid flow intermittency should not affect this long-time behavior of relativeComment: 4 pages, 3 figure

    Lagrangian statistics in forced two-dimensional turbulence

    Full text link
    We report on simulations of two-dimensional turbulence in the inverse energy cascade regime. Focusing on the statistics of Lagrangian tracer particles, scaling behavior of the probability density functions of velocity fluctuations is investigated. The results are compared to the three-dimensional case. In particular an analysis in terms of compensated cumulants reveals the transition from a strong non-Gaussian behavior with large tails to Gaussianity. The reported computation of correlation functions for the acceleration components sheds light on the underlying dynamics of the tracer particles.Comment: 8 figures, 1 tabl

    Reply to the comment by D. Kreimer and E. Mielke

    Get PDF
    We respond to the comment by Kreimer et. al. about the torsional contribution to the chiral anomaly in curved spacetimes. We discuss their claims and refute its main conclusion.Comment: 9 pages, revte

    Electrovac pppp-waves

    Full text link
    New exact solutions of the Einstein-Maxwell field equations that describe pppp-waves are presented

    Induced wormholes due to quantum effects of spherically reduced matter in large N approximation

    Get PDF
    Using one-loop effective action in large N and s-wave approximation we discuss the possibility to induce primordial wormholes at the early Universe. An analytical solution is found for self-consistent primordial wormhole with constant radius. Numerical study gives the wormhole solution with increasing throat radius and increasing red-shift function. There is also some indication to the possibility of a topological phase transition.Comment: LaTeX file, 2 eps figures, 9 pages, few misprints are corrected, numerics are change

    Geometry and violent events in turbulent pair dispersion

    Full text link
    The statistics of Lagrangian pair dispersion in a homogeneous isotropic flow is investigated by means of direct numerical simulations. The focus is on deviations from Richardson eddy-diffusivity model and in particular on the strong fluctuations experienced by tracers. Evidence is obtained that the distribution of distances attains an almost self-similar regime characterized by a very weak intermittency. The timescale of convergence to this behavior is found to be given by the kinetic energy dissipation time measured at the scale of the initial separation. Conversely the velocity differences between tracers are displaying a strongly anomalous behavior whose scaling properties are very close to that of Lagrangian structure functions. These violent fluctuations are interpreted geometrically and are shown to be responsible for a long-term memory of the initial separation. Despite this strong intermittency, it is found that the mixed moment defined by the ratio between the cube of the longitudinal velocity difference and the distance attains a statistically stationary regime on very short timescales. These results are brought together to address the question of violent events in the distribution of distances. It is found that distances much larger than the average are reached by pairs that have always separated faster since the initial time. They contribute a stretched exponential behavior in the tail of the inter-tracer distance probability distribution. The tail approaches a pure exponential at large times, contradicting Richardson diffusive approach. At the same time, the distance distribution displays a time-dependent power-law behavior at very small values, which is interpreted in terms of fractal geometry. It is argued and demonstrated numerically that the exponent converges to one at large time, again in conflict with Richardson's distribution.Comment: 21 page

    On the chiral anomaly in non-Riemannian spacetimes

    Get PDF
    The translational Chern-Simons type three-form coframe torsion on a Riemann-Cartan spacetime is related (by differentiation) to the Nieh-Yan four-form. Following Chandia and Zanelli, two spaces with non-trivial translational Chern-Simons forms are discussed. We then demonstrate, firstly within the classical Einstein-Cartan-Dirac theory and secondly in the quantum heat kernel approach to the Dirac operator, how the Nieh-Yan form surfaces in both contexts, in contrast to what has been assumed previously.Comment: 18 pages, RevTe

    Method for Prediction of the Power Output from Photovoltaic Power Plant under Actual Operating Conditions

    Get PDF
    Solar photovoltaic technology is one of the most rapidly growing renewable sources of electricity that has practical application in various fields of human activity due to its high availability, huge potential and environmental compatibility. The original simulation model of the photovoltaic power plant has been developed to simulate and investigate the plant operating modes under actual operating conditions. The proposed model considers the impact of the external climatic factors on the solar panel energy characteristics that improves accuracy in the power output prediction. The data obtained through the photovoltaic power plant operation simulation enable a well-reasoned choice of the required capacity for storage devices and determination of the rational algorithms to control the energy complex

    Lagrangian statistics of particle pairs in homogeneous isotropic turbulence

    Get PDF
    We present a detailed investigation of the particle pair separation process in homogeneous isotropic turbulence. We use data from direct numerical simulations up to Taylor's Reynolds number 280 following the evolution of about two million passive tracers advected by the flow over a time span of about three decades. We present data for both the separation distance and the relative velocity statistics. Statistics are measured along the particle pair trajectories both as a function of time and as a function of their separation, i.e. at fixed scales. We compare and contrast both sets of statistics in order to gain an insight into the mechanisms governing the separation process. We find very high levels of intermittency in the early stages, that is, for travel times up to order ten Kolmogorov time scales. The fixed scale statistics allow us to quantify anomalous corrections to Richardson diffusion in the inertial range of scales for those pairs that separate rapidly. It also allows a quantitative analysis of intermittency corrections for the relative velocity statistics.Comment: 16 pages, 16 figure

    Small-molecule CaVα1⋅CaVβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking

    Get PDF
    Extracellular calcium flow through neuronal voltage-gated CaV2.2 calcium channels converts action potential-encoded information to the release of pronociceptive neurotransmitters in the dorsal horn of the spinal cord, culminating in excitation of the postsynaptic central nociceptive neurons. The CaV2.2 channel is composed of a pore-forming α1 subunit (CaVα1) that is engaged in protein-protein interactions with auxiliary α2/δ and β subunits. The high-affinity CaV2.2α1⋅CaVβ3 protein-protein interaction is essential for proper trafficking of CaV2.2 channels to the plasma membrane. Here, structure-based computational screening led to small molecules that disrupt the CaV2.2α1⋅CaVβ3 protein-protein interaction. The binding mode of these compounds reveals that three substituents closely mimic the side chains of hot-spot residues located on the α-helix of CaV2.2α1 Site-directed mutagenesis confirmed the critical nature of a salt-bridge interaction between the compounds and CaVβ3 Arg-307. In cells, compounds decreased trafficking of CaV2.2 channels to the plasma membrane and modulated the functions of the channel. In a rodent neuropathic pain model, the compounds suppressed pain responses. Small-molecule α-helical mimetics targeting ion channel protein-protein interactions may represent a strategy for developing nonopioid analgesia and for treatment of other neurological disorders associated with calcium-channel trafficking
    corecore